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§0. Introduction

In this paper, we continue our study of the Hodge-Arakelov theory of elliptic curves,
initiated in [Mzk1], [Mzk2]. The essence of this theory lies in thinking of the comparison
isomorphism of the (complex or p-adic) Hodge theory of an elliptic curve as a restriction
morphism from functions on the de Rham cohomology to functions on some sort of “torsion
points” inside the de Rham cohomology (cf. [Mzk1], Introduction). This function-theoretic
point of view allowed us in [Mzk1] to discretize the usual complex and p-adic Hodge
theories of an elliptic curve into a global, Arakelov-theoretic “Hodge-Arakelov Comparison
Isomorphism” (cf. [Mzk1]).

The first main goal of the present paper is to clear up the confusion surrounding the
discussion of the “étale integral structure” on the universal extension of an elliptic curve,
which was introduced in [Mzk1]. This integral structure may be described as follows.
Over a formal neighborhood of the point at infinity on the moduli stack of elliptic curves,
the tautological elliptic curve E looks like Gm, while its universal extension E† (roughly
speaking: the moduli space of degree zero line bundles on E equipped with a connection)
may be described as the product Gm × A1 of Gm with the affine line. If we write “T”
for the standard coordinate on this affine line, then near infinity, the standard integral
structure on E† may be described as that given by

⊕
r≥0

OGm · T r

while the étale integral structure on E† is given by

⊕
r≥0

OGm ·
(
T

r

)

(where
(
T
r

) def= 1
r!T (T −1) · . . . · (T − (r−1))). Since this integral structure forms an algebra

which is compatible with the group scheme structure of E†, it corresponds to a geometric

object E†et such that E†et ⊗Q = E† ⊗Q.

Although the above definition of E†et is only valid near infinity, this integral structure
may, in fact, be extended over the entire moduli stack of elliptic curves. This fact is
discussed in [Mzk1], Chapter V, §3, but the proof given there is incomplete. Thus, in §1
of the present paper, we give a complete proof of the extendability of this integral structure
over the entire moduli stack of elliptic curves (cf. Theorem 1.3). Next, in §2, we analyze

the p-adic structure of E†et in the case of a p-adic elliptic curve whose reduction modulo p
is ordinary. The main result of this analysis is an isomorphism (cf. Theorem 2.2)

(E†et)∧ ∼= EF∞
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between the p-adic completion of E†et and a certain object EF∞
obtained by considering

composites of the “Verschiebung morphism associated to an ordinary elliptic curve.”

In fact, ultimately, in both the theory of [Mzk1] and of the present paper, we will

need to make use not only of E† and E
†
et, but of certain natural torsors — which we

refer to as Hodge torsors — over E† and E
†
et. The Hodge torsors E∗ may be interpreted

functorially over E as the moduli spaces of connections on certain ample line bundles on
E (where ∗ denotes the ample line bundle in question). The elementary theory of Hodge
torsors and their (partial) compactifications is the topic of §3. In fact, over Q, we have
natural identifications E∗ ⊗Q = E† ⊗Q, i.e., Hodge torsors may be thought of as being
certain integral structures on E†. In a neighborhood of infinity, (relative to the notation
introduced above) this integral structure may be described as that in which the “T r” (in
the case of E†) are replaced by “(T − (iχ/n))r” (where the rational number iχ/n is an
invariant determined by the ample line bundle in question).

Just as in the case of the universal extension E†, the Hodge torsors also admit étale
integral structures, i.e., the integral structures in which the “(T − (iχ/n))r” are replaced
by

(
T − (iχ/n)

r

)

These integral structures are, in fact, necessary not just in the theory of the present paper,
but also in the theory of [Mzk1]. In [Mzk1], however, no proof is given of the fact that the
above definition near infinity (i.e.,

(
T−(iχ/n)

r

)
) extends neatly over the entire moduli stack

of elliptic curves. In the present paper, however, we give a complete proof of this result (cf.
Theorem 4.3). It turns out that this extendability result for Hodge torsors is somewhat
more difficult than its universal extension analogue (i.e., Theorem 1.3), especially at the
prime p = 2. In particular, at the prime p = 2, in order to complete the proof of Theorem
4.3, it is necessary to use the nontrivial theory of connections and higher p-curvatures
developed in the second half of the present paper.

In §5, we prove that the pair (E∗
et,LE∗

et
) (where ∗ may be set equal either to † —

in which case E∗
et

def= E
†
et — or to an ample line bundle (satisfying certain conditions)

— in which case E∗
et is to denote the corresponding Hodge torsor equipped with its étale

integral structure) consisting of E∗
et together with the pull-back to E∗

et of an ample line
bundle L on the original elliptic curve E admits a connection satisfying certain natural
functorial properties (cf. Theorems 5.2, 5.3; Corollary 8.3). That is to say, put another
way, this means that the pair (E∗

et,LE∗
et

) forms a crystal valued in the category of “polarized
schemes” (i.e., schemes equipped with an ample line bundle) over the base. This generalizes
the classical result that the universal extension itself E† forms a crystal in schemes over
the base. From another point of view, this result may be regarded as the scheme-theoretic
analogue of the complex analytic fact that if E is a Riemann surface equipped with an
ample line bundle L, then (if we denote the underlying real analytic objects corresponding
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to various complex analytic objects by means of a subscript “R,” then) not only ER, but
the pair (ER,LR) is, in fact, a topological invariant (i.e., does not vary as the complex
moduli of E vary) of E.

In fact, it is useful here to recall that in some sense:

The essential spirit of the “Hodge-Arakelov Theory of Elliptic Curves”
(studied in [Mzk1], [Mzk2], and the present paper) may be summarized as
being the Hodge theory of the pairs (ER,LR) (at archimedean primes),
(E∗

et,LE∗
et

) (at non-archimedean primes), as opposed to the “usual Hodge
theory of an elliptic curve” which may be thought of as the Hodge theory
of ER (at archimedean primes) or E∗

et (at non-archimedean primes).

In this connection, we note that the “Hodge-Arakelov theory of an elliptic curve at an
archimedean prime” is discussed/reviewed in detail in [Mzk1], Chapter VII, §4. On the

other hand, the very direct and explicit relationship between E
†
et at archimedean primes

and the “classical” p-adic Hodge theory of an elliptic curve may be seen in the theory of
§2 of the present paper.

Once the canonical connection on the pair (E∗
et,LE∗

et
) is constructed in §5, we then

proceed to prove in §6, 7, what may be regarded as Local Hodge-Arakelov Comparison
Isomorphisms, i.e., local versions (that is to say, versions relating to a formal neighbor-
hood of a (scheme-valued) point of the moduli stack of elliptic curves) of the “discrete
Hodge-Arakelov Comparison Isomorphism” of [Mzk1]. The first such local comparison
isomorphism is given in §6 (cf. Theorem 6.2), and is referred to as the “Schottky-Theoretic
Hodge-Arakelov Comparison Isomorphism,” since it involves the Schottky uniformization
of a degenerating elliptic curve. The main technical result underlying Theorem 6.2 is the
explicit computation (cf. Theorem 6.1) of the connection constructed in §5 near infinity
(i.e., for degenerating elliptic curves). The second local comparison isomorphism is given in
§7 (cf. Theorem 7.6; Corollary 8.3) and concerns formal neighborhoods of nondegenerating
elliptic curves.

Another interesting way to think of these local comparison isomorphisms is as results
which allow one to give natural theta expansions of sections of an ample line bundle on an
elliptic curve. Near infinity (cf. §6), this theta expansion is simply the classical one. At
smooth points (cf. §7), however, this expansion appears to be new, and gives rise to a sort
of crystalline theta expansion of sections of an ample line bundle on an elliptic curve (cf.
the discussion of §7 for more details).

In some sense, the comparison isomorphisms of Theorem 6.2 and Corollary 7.6 may
be regarded as prototypes of the comparison isomorphism of [Mzk1]. Put another way, it
seems natural to regard the comparison isomorphism of [Mzk1] as a sort of “extension via
discretization” of the local comparison isomorphisms of §6, 7 (which, as discussed above,
concern formal neighborhoods of points in the moduli stack) over the entire moduli stack
of log elliptic curves. In fact, since the proofs of the local comparison isomorphisms of
the present paper are, in many respects, technically much simpler than the proof of the
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main result of [Mzk1], many readers may wish to study the present paper as a sort of
“introduction” to the main idea behind the theory of [Mzk1].

Yet another interesting aspect of the local comparison isomorphisms of the present
paper — especially Theorem 6.2 — is that Theorem 6.2 further justifies the assertion of the
author in [Mzk1] that the “arithmetic Kodaira-Spencer morphism” constructed in [Mzk1],
Chapter IX, is indeed a natural arithmetic analogue of the usual geometric Kodaira-Spencer
morphism. Indeed:

The comparison isomorphism of Theorem 6.2 renders explicit the sense
in which the characters Uk on the “continuous torsion subgroup” Gm of
the elliptic curve define (through their role as “horizontal sections”), the
usual Gauss-Manin connection on the (polarized) universal extension.

Thus, in particular, this comparison isomorphism makes explicit the fact that looking
at the extent to which the Hodge filtration is preserved by the Gauss-Manin connection
on the “de Rham cohomology” (= in this case, the polarized universal extension of the
elliptic curve) — i.e., the recipe for the usual geometric Kodaira-Spencer morphism — is
essentially equivalent to looking at the extent to which the Hodge filtration is preserved
by permutations of the characters on the torsion — i.e., the recipe for the “arithmetic
Kodaira-Spencer morphism” of [Mzk1], Chapter IX.

One interesting consequence of Theorem 6.2 is that it implies that the p-curvature
of the pair (E∗

et,LE∗
et

) vanishes identically for all prime numbers p (cf. Corollaries 8.2,
8.3). This property is interesting in that it is somewhat different from what might expect,
considering the behavior of more classical objects with connection such as E† itself (cf. the
discussion of §6 for more details). In fact, a stronger result holds: Namely, not only the
p-curvature, but also the “higher p-curvatures” (introduced in [Mzk3], Chapter II, §2.1;
and reviewed in §7.1 of the present paper) of the pair (E∗

et,LE∗
et

) vanish identically for all
prime numbers p (cf. Corollaries 8.2, 8.3). This property of the higher p-curvatures is
of essential importance in the proof of the extendability (over the entire moduli stack of
elliptic curves) of the étale integral structure on E∗ (cf. Theorem 4.3; §8.3).

In §8, we study more of the intrinsic properties of the connection constructed in
§5. One of the most fundamental such properties is that, unlike more classical objects
with connection for which the connection gives rise to jumps of length ≤ 1 in the Hodge
filtration (“Griffiths transversality”), the connection of §5 on the pair (E∗

et,LE∗
et

) gives rise
to jumps of length ≤ 2 on the Hodge filtration. We refer to this property as “Griffiths
semi-transversality.” Using this property, one can define a certain analogue for the pair
(E∗

et,LE∗
et

) of the classical Kodaira-Spencer morphism of a family of elliptic curves. In
§8.1, we compute the Kodaira-Spencer morphism explicitly and show that it is equal to
precisely 1

2 of the classical Kodaira-Spencer morphism (Theorem 8.1). In §8.3, we define
analogues for the pair (E∗

et,LE∗
et

) of the classical Hasse invariant of a family of elliptic
curves in characteristic p. Moreover, whereas the classical Hasse invariants only involve
the p-curvature, in §8.3, we consider “higher analogues” of this sort of invariant, involving
the higher p-curvatures. Then, using a general formula (i.e., having nothing to do with
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the Hodge-Arakelov theory of elliptic curves) for computing higher p-curvatures which
we develop in §8.2, we compute the various analogues of the Hasse invariant of the pair
(E∗

et,LE∗
et

) (cf. Theorem 8.9). These computations are of crucial importance in the proof
of the extendability (over the entire moduli stack of elliptic curves) of the étale integral
structure on E∗ given as the end of §8.3.

Finally, in §9, we clear up the confusion concerning the discussion of the étale integral
structure in [Mzk1] by describing explicitly the relationship between the theory of the
present paper and that of [Mzk1].

To conclude, we remark that since the space VL def= f∗(LE∗
et

) of global sections of LE∗
et

over E∗
et admits a natural connection, as well as a natural Hodge filtration, it is natural to

ask if it does not also admit some sort of natural Frobenius action (i.e., like the MF∇-
objects of [Falt], §2). It is the desire of the author to address this question in more detail
in a future paper. Once such a Frobenius action is defined, it is natural to study the
resulting Frobenius invariants (cf. the case of MF∇-objects; [Falt], §2) over some sort
of ring of p-adic periods such as “Bcrys.” In the present context, however, since instead
of “Griffiths transversality,” our object only satisfies “Griffiths semi-transversality,” it is
natural to expect that the “p-adic periods of Bcrys” are likely not to be sufficient, i.e.,
one expects that in addition to the “p-adic analogue of 2πi,” which is a certain copy of
Zp(1) lying inside Bcrys, we will also need the square root of this p-adic 2πi. That is to
say, it seems that in the case of Griffiths semi-transversality, it is natural to work over a
sort of quadratic extension of Bcrys obtained from Bcrys by adjoining a square root of this
p-adic 2πi. This conforms to the idea that one expects this p-adic theory of “crystalline
theta functions” to be a sort of p-adic analogue of the complex Hodge theory of a polarized
elliptic curve (cf. [Mzk1], Chapter VII, §4), where square roots of 2π occur very naturally.
We hope to address these issues in more detail in a future paper.
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§1. The Étale Integral Structure on the Universal Extension

In this §, we discuss the étale integral structure on the universal extension of an
elliptic curve. This integral structure is discussed in [Mzk1], Chapter V, §3, but since
certain technical details — especially concerning the cohomology and global sections of the
structure sheaf of the universal extension equipped with the étale integral structure —
were omitted in that discussion, we would like to discuss them in the following since they
will be of substantial importance in the present paper.

Let Slog be a fine noetherian log scheme, and

C log → Slog

a log elliptic curve (cf. [Mzk1], Chapter III, Definition 1.1) over Slog. Write D ⊆ S for
the pull-back to S of the divisor at infinity of the moduli stack of log elliptic curves, and
E ⊆ C for the one-dimensional semi-abelian scheme which forms an open subscheme of
the semi-stable compactification C. Also, let us write

E† → E

for the universal extension of E (cf. [Mzk1], Chapter III, Definition 1.2). We shall write
ωE for the line bundle on S given by the relative cotangent bundle of E over S restricted
to the zero section 0E : S → E. Then E† has a natural structure of ωE-torsor over E.
Alternatively, one may think of E† as a (commutative) group scheme over S which surjects
(in the category of group schemes) onto E, with kernel given by the S-group scheme WE

defined by the line bundle ωE .

Next, let us write Ŝ for the formal scheme given by completing S along D. Let us
denote the result of base-changing objects over S to Ŝ by means of a subscript Ŝ. Then
one has a natural identification

E
Ŝ

= (Gm)
Ŝ

Moreover, E†
Ŝ
→ E

Ŝ
admits a unique splitting

κ
Ŝ

: E
Ŝ
→ E

†
Ŝ

(cf. [Mzk1], Chapter III, Theorem 2.1) in the category of group objects over Ŝ. More-
over, over Ŝ, the line bundle ωE admits a natural trivialization defined by the differential
d log(U) = dU/U on (Gm)

Ŝ
= E

Ŝ
(where U is the standard multiplicative coordinate on

Gm). Thus, in particular, by using κ
Ŝ

and d log(U), one may think of the push-forward
R of the structure sheaf O

E
†
Ŝ

to E
Ŝ

as being given by a polynomial algebra:
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R = OE
Ŝ

[T ]

(where the indeterminate T is that defined by the trivialization of ωE given by d log(U)).

In [Mzk1], Chapter III, §6, we defined (in the case where S is, say, Z-flat) a new integral
structure on this algebra R — which we shall refer to as the étale integral structure — as
follows: First, let us write (for r ∈ Z≥0)

T [r] def=
(
T

r

)
=

1
r!
T (T − 1)(T − 2) · . . . · (T − (r − 1)) ∈ RQ

def= R⊗Q

Thus, if we define the operator δ on polynomials f ∈ OS [T ] by:

δ(f) def= f(T + 1)− f(T ) ∈ R

then δ(T [r]) = T [r−1]. Then the étale integral structure on RQ is given by:

Ret def=
⊕
r≥0

OE
Ŝ

· T [r]

It follows immediately from Lemma 1.1 below that this integral structure respects the
OE

Ŝ

-algebra structure of R, as well as the structure of Hopf algebra on R arising from the

fact that E† is group scheme over S.

Lemma 1.1. For nonnegative integers r1, r2, we have:

(i) T [r1] · T [r2] is a Z-linear combination of the T [j], for j ∈ Zj≥0.

(ii)
(
T1+T2
r

)
=

∑r
j=0

(
T1
j

)
·
(
T2
r−j

)
(where T1, T2 are indeterminates).

Proof. Property (i) follows immediately from the well-known fact that the Z-linear span of
the T [j] (for j ∈ Z≥0) may be identified with the ring of Z-valued polynomial functions on
Z. Property (ii) follows by considering the formal identity (1+x)T1+T2 = (1+x)T1 ·(1+x)T2

(cf. [Mzk1], Chapter III, Lemma 7.5). ©

Remark. The name “étale integral structure” arises from the fact that although in origin,
the universal extension E† is a “de Rham-theoretic object,” its integral structure is not
well-suited to restriction to torsion points (which are “étale-theoretic”). The “étale integral
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structure” is thus the natural integral structure on E† which is compatible with the integral
structure arising from restriction to torsion points (cf. [Mzk1], Chapter V, §3).

Remark. The notation T [r] is reminiscent of the notation typically used in discussions of
the crystalline site for the divided powers 1

r!T
r. The point of view that the author wishes

to express here is the following: Just as divided powers arise naturally in discussions of
“usual continuous calculus” and satisfy such properties as d

dT ( 1
r!T

r) = 1
(r−1)!T

(r−1) (with
respect to “continuous differentiation”), the T [r]’s satisfy δ(T [r]) = T [r−1] (where we wish
to think of δ as a sort of “discrete derivative”) and are naturally adapted to discussions
of “discrete calculus” (cf., e.g., [Mzk1], Introduction, §3.4). We would thus like to refer to
them as discrete divided powers.

In [Mzk1], Chapter V, §3, the issue of extending the étale integral structure over all
of S is discussed. This issue of extending the étale integral structure is closely related to
the issue of extending the section κ

Ŝ
. Let us assume just in the following discussion that

S is an affine scheme which is étale (i.e., the classifying morphism defined by E → S is
étale) over the moduli stack (M1,0)Zp

of (smooth!) elliptic curves over Zp (for some prime
number p). Let us write

H → E

for the isogeny given by multiplication by pn. Thus, H → S is another copy of E → S.

It was shown in [Mzk1], Chapter V, §3, that E† → E admits a natural section modulo
pn over H. In the following, we give a slightly different construction of this section from
that given in loc. cit. First, let us consider the pull-back morphisms

H1(E,ωE/S)
φ−→ H1(H,ωE/S |H)

ψ−→ H1(H,ωH/S)

induced by the isogeny H → E. Note that all three of these cohomology modules are
projective OS-modules of rank 1. In fact, the first and third cohomology modules even have
natural trivializations given by the so called “residue map,” which (by elementary algebraic
geometry) may also be thought of as the “degree.” Thus, relative to these trivializations,
the composite ψ ◦ φ corresponds to multiplication by p2n (i.e., the degree of the isogeny
H → E). On the other hand, by functoriality, the morphism ωE/S |H → ωH/S is simply
multiplication by pn. Thus, in particular, we obtain that (for appropriate trivializations)
the morphism φ : H1(E,ωE/S) → H1(H,ωE/S |H) may be identified with multiplication
by p2n/pn = pn. In particular, it follows that the ωE-torsor E† → E splits modulo pn over
H. Moreover, since H0(H,ωE/S |H) = ωE (i.e., such sections are constant on the fibers of
H → S), it follows that restriction to the zero section 0H : S → H of H defines a natural
equivalence of categories between splittings modulo pn of E†|H and splittings modulo pn

of E†|0H
= E†|0E

. On the other hand, E† is a group scheme, hence is equipped with its
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own zero section 0
E† which thus defines a natural splitting of E†|0E

→ S, hence defines a

unique splitting modulo pn of E†|H , which we denote by:

κH : HZ/pnZ → E†

(where the subscript Z/pnZ denotes base-change to Z/pnZ). Note that since this splitting
is natural, it agrees on fiber products (over M1,0) of different S’s, hence is defined over
the moduli stack (M1,0)Z/pnZ. Moreover, κH is compatible with the splitting κ

Ŝ
in the

following sense: When the base S is taken to be complement of the point at infinity in
a neighborhood of infinity of M1,0 — i.e., S = Spec((Z/pnZ)[[q]][q−1]) (where q is the
“q-parameter,” defined in a formal neighborhood of the point at infinity ofM1,0) — then
κH coincides with the section of E†|H defined by κ

Ŝ
(cf. [Mzk1], Chapter V, §3, for more

details). (Indeed, this follows from the above discussion and the fact that both sections
pass through the zero section 0

E† of E†.)

The section κH is the key ingredient that allows one to extend the étale integral
structure over all of M1,0, as desired. This fact is observed in [Mzk1], Chapter V, §3 (at
the end of the “Analytic Continuation Argument”), but the technicalities supporting this
observation were regrettably omitted in loc. cit. (a fact for which the author wishes to
apologize to readers of [Mzk1]), so we would like to discuss them in the following (since
these details turn out to be important in the general framework of the present paper).

Let us return to discussing the situation for a general S for which S is Z-flat. Also,
since we have already defined the étale integral structure in a neighborhood of infinity,
let us assume that E → S is proper (so Slog is equipped with the trivial log structure).
Write R for the push-forward of the structure O

E† to E. Recall that R is equipped with
a natural filtration

F r(R) ⊆ R

given by the functions whose torsorial degree (i.e., degree when thought of as polynomials
in the relative affine variable of E† → E) < r. Thus, F r(R) is a vector bundle on S of
rank r. Moreover, we have a natural identification

(F r+1/F r)(R) = τ⊗rE |E

for r ≥ 0 (where τE is the dual bundle to ωE).

Now we would like to construct new integral structures F r(Ret) on F r(R) which
extend the étale integral structure in a neighborhood of infinity. (Here, when we speak of
“integral structures” F r(Ret), we will always assume that F r(R) ⊆ F r(Ret).) We would
like to do this by induction on r. Consider the following conditions on F r(Ret):
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(Ir) The integral structure induced on (F r+1/F r)(R) = τ⊗rE |E by F r(Ret)
is given by 1

r! · τ
⊗r
E |E .

(IIr) The surjection F r(Ret) → 1
(r−1)! · τ

⊗r−1
E |E (cf. (Ir−1)) induces an

isomorphism on cohomology after arbitrary base-change:

Rf1
∗ (F r(Ret)⊗OS

OT ) ∼= Rf1
∗ (

1
(r − 1)!

· τ⊗r−1
E |E ⊗OS

OT )

(where f : E → S is the structure morphism, and T → S is an arbitrary
— i.e., not necessarily Z-flat — S-scheme).

(IIIr) For any S-scheme T , we have f∗(F r(Ret)⊗OS
OT ) = OT .

(IVr) Write H → E for the isogeny given by multiplication by pn (so H is
just another copy of E). Then the morphism F r(R) → OH ⊗ Z/pnZ
induced by the section κH constructed above factors through F r(Ret).

(Vr) When S = Spec(Z[[q]][q−1]) (where q is the “q-parameter,” defined in a
formal neighborhood of the point at infinity ofM1,0), the integral struc-

ture F r(Ret) is that given by the “Ret def=
⊕

j≥0 OE
Ŝ

· T [j]” discussed
above (cf. [Mzk1], Chapter V, §3, for more details).

We would like to construct F r(Ret) by induction on r in such a way that it is functorial
in (Z-flat) S and, moreover, satisfies the above five properties.

Let us observe first that taking F 1(Ret) def= F 1(R) = OE satisfies the above properties
and is functorial in S. Now let us suppose that F r(Ret) has been constructed for some
r ≥ 1 (which satisfies the above five properties and is functorial in S). Then F r+1(Ret)
may be constructed as follows. First, let us push-forward the exact sequence

0→ F r(R)→ F r+1(R)→ τ⊗rE |E → 0

by F r(R) ↪→ F r(Ret) to obtain an exact sequence:

0→ F r(Ret)→ F r+1(R)′ → τ⊗rE |E → 0

If we then consider the associated long exact sequence in cohomology over the base T
(where T is an S-scheme), we obtain:

0→ f∗(F r(Ret)⊗OS
OT ) = OT → f∗(F r+1(R)′ ⊗OS

OT )→ τ⊗rE ⊗OS
OT

∂′
→ R1f∗(F r(Ret)⊗OS

OT ) =
1

(r − 1)!
· τ⊗rE ⊗OS

OT → R1f∗(F r+1(R)′ ⊗OS
OT )

→ τ⊗r+1
E |E ⊗OS

OT → 0

11



(where we use properties (Ir), (IIr), and (IIIr), together with the natural identification
(by Serre duality) of R1f∗(OE) with τE).

Lemma 1.2. The morphism ∂′ : τ⊗rE ⊗OS
OT → 1

(r−1)! · τ
⊗r
E ⊗OS

OT is given by
multiplication by r on τ⊗rE , followed by the natural inclusion τ⊗rE ↪→ 1

(r−1)! · τ
⊗r
E (tensored

over OS with OT ).

Proof. The connecting morphism τE → R1f∗(OE) for the exact sequence

0→ F 1(R) = OE → F 2(R)→ τE |E → 0

may be identified (up to perhaps a sign — which is irrelevant here) with the identification
τE = R1f∗(OE) (via Serre duality referred to above) — cf. [Mzk1], Chapter III, Theorem
4.2. It thus follows immediately from the “combinatorics of the symmetric algebra” —
i.e., the fact that the automorphism of the polynomial algebra in an indeterminate X that
maps X �→ X + c (for some constant c) will necessarily map Xr �→ Xr + r · c ·Xr−1 + . . .
— that the connecting morphism τ⊗rE → R1f∗(τ⊗r−1

E ) = τ⊗rE for the exact sequence

0→ (F r/F r−1)(R) = τ⊗r−1
E → (F r+1/F r−1)(R)→ (F r+1/F r)(R) = τ⊗rE |E → 0

is given by multiplication by r. Since this connecting morphism is related to the connecting
morphism ∂′ in question by an obvious commutative diagram (which we leave to the reader
to write out), the lemma follows immediately. ©

Now suppose that T def= SZ/pnZ, where n > a
def= ordp(r!); write b def= n− a. Then we

get an exact sequence

0→ OT → f∗(F r+1(R)′ ⊗OS
OT )→ τ⊗rE ⊗ (pbZ/pnZ)→ 0

Note, moreover, that this exact sequence splits. Indeed, by property (IVr), it follows that
κH induces a morphism F r+1(R)′ → OH ⊗ Z/pnZ; applying f∗ to this morphism thus
induces a splitting α of the above exact sequence. Moreover, the above exact sequence
induces an isomorphism:

Ker(α) ∼= τ⊗rE ⊗ (pbZ/pnZ)

Now observe that this splitting α induces a splitting of the surjection

F r+1(R)′ ⊗ (pbZ/pnZ)→ τ⊗rE |E ⊗ (pbZ/pnZ)
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of vector bundles on E⊗ (Z/paZ). Let us denote the image of τ⊗rE |E ⊗ (pbZ/pnZ) via this
splitting by

M⊆ F r+1(R)′ ⊗ (pbZ/pnZ)

Next, let us define

F r+1(Ret) ⊆ 1
r!
· F r+1(R)′

at the prime p as the subsheaf generated by the sections m of 1
r! · F r+1(R) for which

pn ·m ∈M. (Here, we think of multiplication by pn as defining an isomorphism F r+1(R)′⊗
(p−aZ/Z) ∼= F r+1(R)′ ⊗ (pbZ/pnZ).)

Then one checks easily that this definition is independent of n, and that the resulting
F r+1(Ret) is a vector bundle on OE of rank r + 1 which contains F r(Ret) (in such a
way that (F r+1/F r(Ret) is torsion free) and satisfies the condition (Ir+1) discussed above.
Thus, we get a long exact sequence (for an arbitrary S-scheme T ):

0→ OT
β→ f∗(F r+1(Ret)⊗OS

OT )→ 1
r!
· τ⊗rE ⊗OS

OT
∂et

→ 1
(r − 1)!

· τ⊗rE ⊗OS
OT → R1f∗(F r+1(Ret)⊗OS

OT )

γ→ 1
r!
· τ⊗r+1
E |E ⊗OS

OT → 0

(cf. the exact sequence discussed above in the case of F r+1(R)′). Moreover, since the
connecting morphism ∂et is given by multiplication by r (cf. Lemma 1.2), it follows that
∂et is an isomorphism. In particular, we obtain that β and γ are also isomorphisms,
so conditions (IIr+1) and (IIIr+1) are also satisfied by F r+1(Ret). Moreover, it follows
from the definition of the section α and the construction of F r+1(Ret) that F r+1(Ret)
also satisfies (IVr+1). To see that F r+1(Ret) satisfies (Vr+1), it suffices to observe that,
for instance, (Ir+1) and (IVr+1) uniquely determine F r+1(Ret) (cf. the construction of
F r+1(Ret) by means of α), and that the “F r+1(Ret)” defined above in a neighborhood of
infinity also satisfies (Ir+1) and (IVr+1) (indeed, this essentially amounts to the fact that
the T [j] assume integral values on all elements of Z — cf. [Mzk1], Chapter V, §3, for more
details). This completes the construction of the F r(Ret) (for all r ≥ 1).

We summarize the above discussion as follows:

Theorem 1.3. (Étale Integral Structure on the Universal Extension) Let Slog be
a fine, Z-flat noetherian log scheme. Let C log → Slog be a log elliptic curve. Write E ⊆ C
for the open subscheme which is a one-dimensional semi-abelian scheme, and E† → E for

the universal extension. Thus, there is a natural ωE-torsor E†C → C that extends E† → E
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(cf. [Mzk1], Chapter III, Corollary 4.3). Denote by R the push-forward of O
E
†
C

to C,

equipped with its natural filtration F r(R) (given by considering sections whose torsorial
degree is < r). Then there is a natural integral structure (functorial in Slog)

Ret ⊆ RQ

that satisfies the following properties:

(I) (Subquotients) The integral structure induced on (F r+1/F r)(R) =
τ⊗rE |C by F r(Ret) is given by 1

r! · τ
⊗r
E |C .

(II) (Cohomology) The surjection F r(Ret) → 1
(r−1)! · τ

⊗r−1
E |C (cf. (I))

induces an isomorphism on cohomology after arbitrary base-change:

Rf1
∗ (F r(Ret)⊗OS

OT ) ∼= Rf1
∗ (

1
(r − 1)!

· τ⊗r−1
E |C ⊗OS

OT )

(where f : C → S is the structure morphism, and T → S is an arbitrary
— i.e., not necessarily Z-flat — S-scheme). In particular, we have:
Rf1

∗ (Ret ⊗OS
OT ) = 0.

(III) (Global Sections) We have: f∗(Ret⊗OS
OT ) = OT (for any S-scheme

T ).

(IV) (Compatibility with the Canonical Section) Suppose that E = C.
Write H → E for the isogeny given by multiplication by pn (so H is just
another copy of E). Then the morphism F r(R)→ OH⊗Z/pnZ induced
by the section κH constructed above factors through F r(Ret).

(V) (Description at Infinity) When S = Spec(Z[[q]][q−1]) (where q is the
“q-parameter,” defined in a formal neighborhood of the point at infinity
of M1,0), the integral structure F r(Ret) is that given by the “Ret def=⊕

j≥0 OE
Ŝ

· T [j]” discussed above (cf. [Mzk1], Chapter V, §3, for more
details).

(VI) (Group Scheme Structure) Ret is an OC-algebra which is compat-
ible with the group scheme structure of E†.

Thus, in particular, E†et
def= Spec(Ret|E) defines a group scheme (which is not of finite

type) over S equipped with a homomorphism

E
†
et → E

Moreover, over Q, this homomorphism may be identified with E† → E.

14



Proof. It remains only to verify property (VI). But this follows immediately from property
(V) and the discussion preceding Lemma 1.1 above. (Here we use the fact that the moduli
stack (M1,0)Z is regular of dimension 2, so integral structures are completely determined
once they are determined over Q and near the point at infinity.) ©

Remark. The observation that property (VI) (of Theorem 1.3) holds arose from discussions
between the author and A. Ogus in October 1999.

Remark. Properties (II) and (III) of Theorem 1.3 will be of fundamental importance in this
paper. Note that these properties do not hold for the universal extension with its usual
integral structure.

§2. The Étale Integral Structure for an Ordinary Elliptic Curve

Let p be a prime number. In this §, we make explicit the structure of the p-adic

completion (E†et)∧ of the universal extension equipped with the étale integral structure,
in the case of an elliptic curve whose reduction modulo p is ordinary. In particular, we
construct an isomorphism

(E†et)∧ ∼= EF∞

between this p-adic completion and a certain object EF∞
obtained by considering com-

posites of the “Verschiebung morphism associated to an ordinary elliptic curve.”

§2.1. Some p-adic Function Theory:

In the following discussion, if X and Y are topological spaces, then let us write

Cont(X,Y )

for the space of continuous functions from X to Y . On the other hand, let us write

Comb(Zp)

for the free Zp-module generated by the symbols T [j], for j ∈ Z≥0. Thus, by thinking
of the symbol T [j] as the continuous Zp-valued function on Zp that maps λ ∈ Zp to(
λ
j

)
, we obtain a natural morphism Comb(Zp) → Cont(Zp,Zp). One sees easily that this
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morphism extends naturally to the p-adic completion Comb(Zp)∧ of Comb(Zp). Moreover,
it is well-known (by a result of Mahler — cf., e.g., [Katz3], §3.2) that:

Lemma 2.1. The resulting morphism

Comb(Zp)∧ → Cont(Zp,Zp)

is a bijection.

§2.2. The Verschiebung Morphism:

Let S be a p-adic formal scheme S which is formally smooth over Zp. Assume also
that we are given a family of ordinary elliptic curves E → S such that the associated
classifying morphism S → (M1,0)Zp

is formally (i.e., relative to the p-adic topology) étale.
(Here, by “ordinary,” we mean that the fibers of E → S over all the points of SFp

have
nonzero Hasse invariant.) For n ≥ 1, write

E[pn] def= Ker([pn] : E → E)

for the kernel of multiplication by pn on E. Then, as is well-known (cf., e.g., [Katz4], p.
150), there is a unique exact sequence

0→ E[pn]µ → E[pn]→ E[pn]et → 0

of finite flat group schemes over E such that E[pn]µ (respectively, E[pn]et) is étale locally
isomorphic to µpn (respectively, Z/pnZ).

Let us write

EFn def= E/E[pn]µ

Then since EFn → S is a family of elliptic curves, and the classifying morphism associated
to E → S is étale, it follows that EFn → S defines a morphism

ΦnS : S → S

One checks easily that ΦS
def= Φ1

S is a lifting of the Frobenius morphism in characteristic
p, and that ΦnS is the result of iterating ΦS a total of n times (as the notation suggests).
The morphism

V : EF → E
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given by dividing EF by the image in EF of E[p] will be referred to as the the Verschiebung
morphism associated to E. For any n ≥ 1, the morphism

Vn : EFn → E

given by dividing EFn

by the image in EFn

of E[pn] is easily seen to be equal (as the
notation suggests) to the “n-th iterate” (i.e., up to various appropriate base changes by
iterates of ΦS) of V. Note that the kernel of Vn may be identified with E[pn]et. In
particular, it follows that Vn is étale of degree pn.

Thus, we obtain a tower

. . .→ EFn → EFn−1 → . . .→ EF → E

of étale isogenies of degree p. Let us denote the p-adic completion of the inverse limit of
this system of isogenies by EF∞

. Thus, in particular, we have a natural morphism

EF∞ → E

The goal of the present § is to construct a natural isomorphism

EF∞ ∼= (E†et)∧

between EF∞
and the p-adic completion of E†et.

We begin by constructing a morphism

κ[pn] : EFn ⊗ Z/pnZ→ E† ⊗ Z/pnZ

as follows: First, observe that since Vn : EFn → E is finite étale of degree pn, it follows that
the pull-back via Vn of any ωE-torsor on E splits modulo pn (cf. the argument involving
the isogeny “H → E” in §1). Thus, if we take the (unique!) splitting modulo pn of the
pull-back of E† → E via Vn which maps the origin of EFn

to that of E†, we obtain a
morphism κ[pn] : EFn ⊗Z/pnZ→ E† ⊗Z/pnZ, as desired. Note, moreover, that since the
morphism H → E (given by multiplication by pn) considered in §1 factors through EFn

,
it makes sense to compare the splitting κH ⊗ Z/pnZ of §1 with κ[pn]|H . Then it follows
immediately from the definitions that these two splittings coincide.

Now, if we pass to the limit n→∞, we obtain a morphism

κ[p∞] : EF∞ → (E†)∧
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(where “∧” denotes p-adic completion). Finally, by the property of Theorem 1.3, (IV)
(i.e., compatibility of the étale integral structure with κH), together with the coincidence
“κH⊗Z/pnZ = κ[pn]|H” observed above (and the fact that the morphisms H → EFn → E
in the factorization ofH → E are both faithfully flat), we obtain that κ[p∞] factors through
the étale integral structure of E†, i.e., we obtain a morphism

κ∞et : EF∞ → (E†et)∧

as desired.

Theorem 2.2. (Explicit Description of the Étale Integral Structure of an
Ordinary Elliptic Curve) The natural morphism

κ∞et : EF∞ → (E†et)∧

from the p-adic completion of the “Verschiebung tower” of E to the p-adic completion of
the universal extension of E equipped with the étale integral structure is an isomorphism.

Proof. Write G def= EF∞
. Thus, we have a natural morphism G → E. In order to prove

that κ∞et is an isomorphism, we would like to regard κ∞et and κ[p∞] as morphisms over
E; then to base-change these morphisms by the faithfully flat morphism G → E; and
finally, to apply Lemma 2.1 to show that the result of base-changing κ∞et by G→ E is an
isomorphism. This will complete the proof that κ∞et itself is an isomorphism.

Write Eet for the inverse limit of the E[pn]et via the natural projection morphisms.
Thus, Eet → S is a “profinite étale covering.” Moreover, since EF∞ → E admits a natural
structure of Eet-covering, it follows that we have a natural isomorphism

EF∞ ×E G ∼= Eet ×S G

On the other hand, if we base-change (E†)∧ → E by G→ E, then the resulting (E†)∧|G →
G admits a splitting (defined by κ[p∞])

(E†)∧ ×E G ∼= (V(ωE))∧ ×S G

(where V(−) denotes the affine group scheme over S defined by the line bundle in paren-
theses). Moreover, let us observe that if we think of Eet as a local system of Zp-modules
on S, then we have a natural isomorphism

Eet ⊗Zp
OS ∼= ωE
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(cf., e.g., [Katz4], p. 163). Now I claim that relative to these natural isomorphisms, the
morphism κ[p∞]|G amounts to the natural inclusion

Eet|G ↪→ V(Eet ⊗Zp
OS)∧|G ∼= (V(ωE))∧|G

Indeed, this claim may be verified in a formal neighborhood of infinity, where it follows from
the well-known structure of the universal extension in a formal neighborhood of infinity,
as reviewed, for instance, in §1.

The elucidation of the structure of κ[p∞]|G in the preceding paragraph thus shows
that (up to choosing a trivialization Eet

∼= Zp over some profinite étale covering of S) the
morphism induced by κ∞et |G on functions is none other than the morphism

Comb(Zp)∧ → Cont(Zp,Zp)

considered in Lemma 2.1 (topologically tensored over Zp with OG). Thus, Lemma 2.1
implies that κ∞et |G, hence (by faithful flat descent) that κ∞et is an isomorphism, as desired.
©

Remark. One way to think of the content of Theorem 2.2 is as the assertion that:

The étale integral structure on E† is very closely related to the p-adic
Hodge theory of E.

Another manifestation of this phenomenon is the following: The splitting κH : HZ/pnZ →
E† used in §1 to construct the étale integral structure on E† defines a morphism

κH [pn] : E[pn]→ V(ωE)⊗ Z/pnZ

(i.e., by thinking of κH as a morphism over E and taking the morphism induced on fibers
over the origin of E). Note that κH [pn] is defined even without the ordinariness assumption
on E. Moreover, if we denote by T → S the normalization of S in the finite étale covering
TQp

→ SQp
given by considering pn-level structures on E, and by T (E) the p-adic Tate

module of E, then restricting κH [pn] to T defines a morphism

αn : T (E)⊗Zp
OT ⊗ Z/pnZ→ ωE |T ⊗ Z/pnZ

which is the “fundamental morphism (often referred to as the ‘period map’) of the p-adic

Hodge theory of E” (cf., e.g., the morphism “Hom(TE , JQp
) → ωE ⊗R R̂Qp

” of [Mzk1],
Chapter IX, §2). Indeed, the coincidence of these two morphisms may be verified in a
formal neighborhood of infinity, where it is clear from the discussion of [Mzk1], Chapter
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IX, §2, together with the well-known structure of the universal extension (as reviewed, for
instance, in §1 of the present paper).

Remark. Since E†et is defined globally over Z whenever E is defined globally over Z, Theo-

rem 2.2 may also be taken as asserting that E†et enjoys the following remarkable interpre-
tation:

The universal extension of an elliptic curve equipped with the étale inte-
gral structure is a natural globalization over Z of the (very local!) p-adic
Hodge theory of the Hodge elliptic curve.

This interpretation is very much in line with the general philosophy of [Mzk1] and the
present paper (cf., e.g., the Introduction of [Mzk1]).

§3. Compactified Hodge Torsors

In this §, we expand on the discussion of [Mzk1], Chapter III, §4, and, in particular,
further clarify the relationship between the universal extension of an elliptic curve and the
Hodge-theoretic first Chern class of a line bundle on the elliptic curve.

Let

C log → Slog

be a log elliptic curve as in §1. Also, we write E ⊆ C, D ⊆ S, E† → E (cf. §1) for the
various objects associated to C log → Slog. In this §, we would also like to consider a line
bundle L on C, whose relative degree over S we denote by d. Now define

CL → C

to be the ωE-torsor over C of logarithmic connections (relative to the morphism C log →
Slog) on the line bundle L. We will denote the open subscheme CL ×C E ⊆ CL by EL.

Next, we would like to show that EL admits a natural structure of E†-torsor. First,
let us observe that we have a natural action of E† on CL. Indeed, suppose that we are
given an S-scheme T → S, a point α† ∈ E†(T ) (whose image in E(T ) we denote by α),
an open subscheme U ⊆ CT

def= C ×S T , and a logarithmic connection ∇ on L|U . Write
Uα ⊆ CT (respectively, Lα; ∇α) for the open subscheme ⊆ CT (respectively, line bundle on
CT ; logarithmic connection on Lα|Uα

) obtained from U (respectively, L; ∇) by translating
by α. Then we must construct, from this data, a logarithmic connection ∇α on L|Uα

. To

20



do this, we observe that the lifting α† of α corresponds to a logarithmic connection ∇′ on
OCT

([α] − [0CT
]) (where 0CT

is the zero section of CT ). On the other hand, we have the
following

Lemma 3.1. We have an isomorphism of line bundles on C

OCT
([α]− [0CT

])⊗d ∼= Lα ⊗OCT
L−1
T ⊗OT

N

for some line bundle N on T .

Proof. First, let us observe that it suffices to show the existence of such an isomorphism
(Zariski) locally on S. Moreover, after localizing on S, it follows from the fact that the
divisor [0C ] ⊆ C (defined by the zero section 0C) is ample that L is linearly equivalent to
a divisor of the form

N · [0C ]− F

for some effective Cartier divisor F ⊆ E ⊆ C over S (i.e., such that F → S is finite and flat).
Since the “moduli space” of such divisors over S is given by the some symmetric product
of copies of E (over S), it follows that (by working with universal T = S, Clog → Slog, α,
and F ), we may assume that D ⊆ S (i.e., the pull-back to S of the divisor at infinity of the
moduli stack of log elliptic curves) is a Cartier divisor in S. But, under this assumption,
one sees easily that Lemma 3.1 holds if and only if it holds over S\D. Thus, in particular,
we may assume that D = ∅.

Thus, E → S is proper and smooth. Moreover, the line bundle L(−d · [0E ]) on E is
of relative degree 0, hence is preserved (up to tensor product with a line bundle pulled back
from S) by translation by α. (This essentially amounts to the “theorem of the square” —
cf., e.g., [Mumf5], Chapter II, §6, Corollary 4.) Writing this fact out explicitly yields the
isomorphism asserted in the statement of Lemma 3.1 ©

Thus, by subtracting (∇′)⊗d from the connection ∇α on Lα|Uα
, we obtain a connection

∇α on L|Uα
, as desired. It is clear that this correspondence (α,∇) �→ ∇α is additive in α

and functorial in T .

Thus, we obtain a natural action of E† on CL, as desired. Since this action is
compatible with the usual action of E on C relative to the projections E† → E and
CL → C, as well as with the natural action of WE ⊆ E on the fibers of CL → C (where
WE is the affine group scheme over S associated to ωE), we thus see that this action of
E† on CL induces a natural structure of E†-torsor on EL. Now we make the following:

Definition 3.2. We shall refer to EL (respectively, CL), equipped with its natural
E†-action as defined above, as the Hodge torsor (respectively, compactified Hodge torsor)
associated to the line bundle L.
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If L is defined by a Cartier divisor F on C, then we will frequently write EF , CF for EL,
CL.

Observe that if L1 and L2 are line bundles on C of the same relative degree over S,
then CL1 and CL2 differ by a ωE-torsor

T L1,L2 → S

defined over S. Indeed, this follows from the fact the class in

R1f∗(ωE |C) ∼= OS

defined by any CL is simply the relative degree of L. Thus, we will write

CL1 = T L1,fl2 + CL2

(where the “+” is to be understood as the “sum of ωE-torsors”). Similarly, since (cf.

[Mzk1], Chapter III, Theorem 4.2) the class defined in R1f∗(ωE |C) ∼= OS by E†C is −1, for
any line bundle L of relative degree −1, we shall write

T †,L → S

for the ωE-torsor over S given by the difference “E†C − CL.” When L = OC(−[0C ]), we
shall simply write

T † → S

for T †,L → S.

In fact, the ωE-torsor CL → C was discussed in [Mzk1], Chapter III, §4, in some detail,
under the name “Tor → C.” In the notation of the present discussion, the discussion of
[Mzk1], Chapter III, §4, may be summarized as follows:

Proposition 3.3. (Relationship Between the Universal Extension and the
Hodge Torsor) The ωE-torsor T † satisfies the following:

(1) The ωE-torsor T † is naturally isomorphic to the torsor of splittings of
the exact sequence

0→ ω⊗2
E = I2/I3 → I/I3 → ωE = I/I2 → 0
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(where we write I for the sheaf of ideals on C that defines the zero
section). Moreover, the torsor 2 · T † (obtained from T † by pushing
out via the map [2] : ωE → ωE given by multiplication by 2) admits a
canonical trivialization. The splitting of the above exact sequence that
corresponds to this trivialization may be characterized as either (i) the
unique splitting that is compatible with the natural action of ±1 on the
above exact sequence (cf. [Mzk1], Chapter III, §4); or (ii) the splitting
defined by integrating invariant differentials on E (cf. [Mzk1], Chapter
IX, Appendix).

(2) There is a canonical isomorphism of ωE-torsors over C:

E
†
C
∼= C−[OC ] + T †

(which is valid even if 2 is not invertible on S). Thus, if 2 is

invertible on S, we obtain an isomorphism E
†
C
∼= C−[OC ] (cf. [Mzk1],

Chapter III, Theorem 4.2).

Finally, (as was observed in [Mzk1], Chapter III, the Remark following Corollary 3.3) in
general, the torsor T † is nontrivial.

Before concluding this §, we also note the following:

Proposition 3.4. (Relationship Between Different Hodge Torsors) Let α ∈
E(S). Write Lα for the line bundle on C obtained by translating L by α. Then “transport
of structure” induces natural isomorphisms

CL ∼= CLα ; EL ∼= ELα

compatible with the actions of E† on both sides, and (via the projections to C on both
sides) with translation by α on C.

If, moreover, α is a torsion point of order m, and m ∈ O×
S , then then there exists a

unique torsion point α† ∈ E†(S) lifting α. Moreover, transport of structure via translation
by −α, followed by the action of α† ∈ E†(S) on CL, defines a natural isomorphism

CLα ∼= CL

compatible with the projections on both sides to C (as well as with the actions on both sides
of E†). In particular, in this case, the torsor T L,Lα → S admits a natural splitting.

Proof. There is practically nothing here that requires further argument. Note that the
existence of a lifting α† as asserted follows from the fact that the kernel WE of E† → E is

23



the affine group scheme associated to the line bundle ωE on S, together with the assumption
that m ∈ O×

S . ©

Remark. Suppose that α ∈ E(S) is a torsion point of order m, and that 2m ∈ OS is a
non-zero divisor. Then, by identifying the restrictions to S⊗Z[ 1

m ] of C−[0C ] and C−[α] via
the isomorphism at the end of Proposition 3.4 involving α†, and using the natural splitting
of T † discussed in Proposition 3.3, we see that

One may think of C−[α] ∼= Cα as a sort of “modified integral structure”

on C−[0C ] ⊗ Z[ 1
m ] or, alternatively, on E

†
C ⊗ Z[ 1

2m ].

Of course, all of these integral structures are compatible with the natural actions of E†,
and the natural projections to C.

Remark. In fact, just as we defined étale integral structures on E†, E†C in §1, we would also
like to define étale integral structures on the (compactified) Hodge torsors of the present §,
in such a way that the various actions of E† are compatible with the various étale integral
structures. This is precisely the topic of §4, below.

§4. The Étale Integral Structure on the Hodge Torsors

In this §, we show that the compactified Hodge torsors introduced in §3 admit natural
étale integral structures, similar to those constructed on the universal extension in §1. In
fact, in the present §, we will only give the proof of the existence of such integral structures
for degenerating elliptic curves and elliptic curves with ordinary reduction modulo p. In
order to complete the proof for arbitrary elliptic curves (which we will do in §8), we will
need to enlist the aid of the techniques of §6, 7, below. (Note: The results of §6, 7, that
will be necessary to complete the proof will only require the étale integral structure for
degenerating elliptic curves, so there will not be any “vicious circles” in the reasoning.)

§4.1. Notation and Set-Up:

In this §, we use notation similar to that of [Mzk1], Chapter IV, §2: More precisely,
let O be a Zariski localization of the ring of integers of a finite extension of Q; let m be a
positive integer; n def= 2m;

A
def= O[[q

1
n ]]; S

def= Spec(A); Ŝ
def= Spf(A)

(where q is an indeterminate, and we regard A as equipped with the q-adic topology). Over
S, we have a natural degenerating elliptic curve E → S (with “Tate parameter” given by
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q), together with a compactification C → S whose pull-back C
Ŝ
→ Ŝ to Ŝ may be obtained

as the quotient of an object C∞
Ŝ

with respect to the natural action of a group, which we

denote by Zet
def= Z, on C∞

Ŝ
:

C
Ŝ

= C∞
Ŝ
/Zet

Here, C∞
Ŝ

is the pull-back to Ŝ of the “Néron model” of (Gm)O[[q]][q−1] over O[[q]]. Thus,

the special fiber (C∞
Ŝ

)spl of C∞
Ŝ

(i.e., the zero locus of the function q
1
n ) is a chain of P1’s

over Spec(O) indexed by Z (which we think of as the group of exponents of q that occur
in (O[[q]][q−1])×) and permuted by the action of the group Zet, in a fashion which is
compatible with the indexing by Z and the natural action of Zet = Z on Z (by addition).
Note, moreover, that we have a natural identification E

Ŝ
= (Gm)

Ŝ
. We will denote the

usual multiplicative coordinate on this copy of Gm by U .

In the following discussion, in addition to C → S, we will also need to make use of
the log elliptic curve C̃ → S whose Tate parameter is given by q

1
n . Let us denote by Ẽ,

C̃∞
Ŝ

, Ũ , etc. the various objects (analogous to E, C∞
Ŝ

, U , etc.) associated to C̃. Also, let
us observe that we have a natural isogeny of degree n:

C̃ → C

defined by U �→ Ũn. Thus, this isogeny is covered by an isogeny C̃∞
Ŝ
→ C∞

Ŝ
(also of degree

n, and defined by U �→ Ũn). Put another way, instead of introducing C̃, etc., we could
simply have said that occasionally we will also make use of the n-th root U

1
n of U .

Next, we consider line bundles. Write

LC def= OC(0C); L
C̃

def= O
C̃

([(µn)C̃ ])

(where 0C is the zero section of C → S, and (µn)C̃ ⊆ C̃ is the kernel of the isogeny
Ẽ → E). Thus, the pull-back of LC to C̃ is given by L

C̃
.

Now it follows from the theory of [Mzk1], Chapter IV, §2, that L
C̃∞

Ŝ

def= L|
C̃∞

Ŝ

admits

a natural trivialization “θm.” Moreover, the line bundle L|
C̃∞

Ŝ

admits a natural action of

Zet × µn (which is compatible with the natural action of Zet × µn on C̃∞
Ŝ

). Relative to

this action, µn acts trivially on θm, while ket ∈ Zet maps θm �→ q
1
2k

2 ·Uk · θm (cf. [Mzk1],
Chapter IV, Proposition 2.2). Moreover, LC is obtained from L

C̃∞
Ŝ

by descending L
C̃∞

Ŝ

by means of the action obtained by tensoring this natural action with a certain character
χθ : Zet × µn → µn (cf. [Mzk1], Chapter IV, Theorem 2.1) of order two.
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In the present discussion, we would like to assume further (cf. [Mzk1], Chapter V, §4)
that we are given a character

χL ∈ Hom(Zet × µn,µn)

We would then like to consider (cf. [Mzk1], Chapter V, §4) what is, in effect, the result of
twisting LC by χL. In more down to earth terms, this amounts to considering sections of
L
C̃∞

Ŝ

which are invariant which respect to the action of (various subgroups of) Zet × µn

given by tensoring the natural action with the character χM
def= χL · χθ. (Here, the

“subgroup” is the subgroup corresponding to the intermediate covering of C̃∞
Ŝ
→ C

Ŝ
over

which the section is to be defined.) In the following discussion, for the sake of brevity:

We shall denote by “LχC” the object consisting of L
C̃∞

Ŝ

, equipped with

the action of χM.

In particular, we shall refer to χM-invariant sections of L
C̃∞

Ŝ

as “sections of LχC .” Observe

that, by applying finite flat descent to L
C̃∞

Ŝ

(equipped with the action defined by χM)

and then algebrizing, over E ⊆ C, as well as over C̃, we obtain genuine line bundles “LχE ,”
“Lχ

C̃
.” (Note that we cannot apply such a descent argument to C̃ → C since it fails to be

flat at the nodes.)

Thus, the space

Γ(C∞
Ŝ
,LχC∞

Ŝ

)

may be identified with the topological A-linear combinations of

Uk · Ũ iχ · θm

where iχ ∈ {−m,−m+ 1, . . . ,m− 1} is a number that depends only on the character χL
(cf. [Mzk1], Chapter V, Theorem 4.8), and k ranges over all integers. Moreover, for k ∈ Z,
the corresponding element ket ∈ Zet acts on these sections by:

θm �→ χM(ket) · q
k2
2 · Uk · θm; Ũ �→ q

k
n · Ũ ; U �→ qk · U ;

Thus, a generator of Γ(C,LC) is given by the series

∑
k∈Z

χM(ket) · q
1
2k

2+
iχ
n k · Uk · Ũ iχ · θm
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(cf. [Mzk1], Chapter V, Theorem 4.8).

§4.2. Degenerating Elliptic Curves:

Just as E† and E
†
C admit natural étale integral structures (cf. the discussion of

§1), the compactified Hodge torsors CL introduced in §3 also admit natural étale integral

structures. Also, just as in the case of E†C , we will construct these integral structures by
first constructing them in a formal neighborhood of infinity (cf. the discussion below) and
then extending them to the rest of the moduli stack of elliptic curves.

First, let us observe (cf. the discussion preceding Lemma 1.1) that by using the

splitting κC∞
Ŝ

: C∞
Ŝ
→ E

†
C∞

Ŝ

def= E
†
C |C∞

Ŝ

(defined by the canonical section “κ” of [Mzk1],

Chapter III, Theorem 2.1) and the logarithmic differential d log(U), one may think of the
push-forwardR of the structure sheaf O

E
†
C∞

Ŝ

to C∞
Ŝ

as being given by a polynomial algebra:

R = OC∞
Ŝ

[T ]

(where the indeterminate T is that defined by the trivialization of ωE given by d log(U)).
Then we would like to define the χL-étale integral structure on R by:

Ret
χ

def=
⊕
r≥0

OC∞
Ŝ

· T [r]
χ

where

T [r]
χ

def=
(
T − (iχ/n)

r

)

(cf. the integral structure

Ret def=
⊕
r≥0

OC∞
Ŝ

· T [r]

defined by the étale integral structure on E†C,et).

Observe (by applying Lemma 1.1, “shifted over by iχ/n”) that Ret
χ is closed under

multiplication, hence defines an OC∞
Ŝ

-algebra. Moreover, the corresponding geometric

object Spec(Ret
χ ) over C∞

Ŝ
forms a torsor over the C∞

Ŝ
-group (cf. Lemma 1.1, (ii)) object

Spec(Ret). In more concrete terms:

27



This torsor amounts to the Z-torsor (iχ/n) + Z.

That is, Ret
χ (respectively, Ret) may be thought of as the ring of OC∞

Ŝ

-valued functions on

(iχ/n) + Z (respectively, Z).

Note that over the “generic fiber” EU
def= E⊗AA[q−1], the notation LχEU

corresponds to
a genuine line bundle of the form OEU

(η), for some torsion point η ∈ E(A[q−1]) annihilated
by n. Then let us observe that, over A[q−1], the integral structure on E† defined by

⊕
r≥0

OC∞
Ŝ

· {T − (iχ/n)}r

coincides with the integral structure on E† defined by C [η] (cf. the first Remark following
Proposition 3.4). Indeed, to see this, we argue as follows: First, note that the relative
connection (i.e., over Ŝ) ∇C∞

Ŝ

on Lχ
C̃∞

Ŝ

= L
C̃∞

Ŝ

obtained by pull-back (via the canonical

section) from the tautological (cf. [Mzk1], Chapter III, Theorem 4.2) relative connection

∇
E
†
C∞

Ŝ

on E
†
C∞

Ŝ

is that for which θm is horizontal (cf. [Mzk1], Chapter III, Theorem

5.6). But this connection becomes integral on Γ(C∞
Ŝ
,LχC∞

Ŝ

) (i.e., on sections of the form

Uk · Ũ iχ · θm) if and only if it is supplemented by the extra term “−(iχ/n).” On the other
hand, since ∇

E
†
C∞

Ŝ

may be written as ∇C∞
Ŝ

+ T (cf. the discussion of [Mzk1], Chapter

III, §7), it thus follows that the integral structure on E† defined by C [η] is that given by
polynomials in T − (iχ/n), as desired (cf. also [Mzk1], Chapter IV, Theorem 3.3).

Note that the Ret
χ is preserved by the natural action on R of Zet (for which 1et(T ) =

T + 1). Thus, Ret
χ descends to an integral structure on E†C , which we denote by

C
[η]
et

i.e., C [η]
et |C∞

Ŝ

= Spec(Ret
χ ) (where the “Spec” is as an object over C∞

Ŝ
). In particular, it is

natural to regard C [η]
et as the analogue for C [η] of the étale integral structure E†C,et on E

†
C .

Finally, before proceeding, we note that the integral structure Ret
χ also satisfies the

following properties:

(1) The integral structure Ret
χ is completely determined by the torsion point

η. In particular, it is independent of the choice of n, χL (i.e., among
those n, χL that give rise to the same twist of the line bundle LC as η).
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(2) The sections ζCG
0 , ζCG

1 , . . . , ζCG
r , . . . ∈ Γ((E†C,et)Ŝ ,L

χ

(E
†
C,et)Ŝ

) ⊗ Q of

[Mzk1], Chapter V, Theorem 4.8, form a basis over A of the module
Γ(C [η]

et ,Lχ|C[η]
et

). Indeed, this follows from the description of ζCG
r given

in [Mzk1], Chapter V, Theorem 4.8, as the result of applying the oper-
ator (∇C∞

Ŝ

+ λr − (iχ/n)
r

)

(cf. the definition of T [r]
χ above and the fact that “λr” is an integer) to

ζCG
0 , together with [Mzk1], Chapter III, Theorem 5.6.

§4.3. Ordinary Elliptic Curves:

In the following, we maintain the notation of the discussion of the Verschiebung mor-
phism in §2. Write L def= OE(0E) for the line bundle defined by the origin of E. Since the
pull-back of L by Vn : EFn → E has degree pn, the resulting theta group (cf. [Mumf1,2,3];
[Mumf5], §23; or, alternatively, [Mzk1], Chapter IV, §1, for an exposition of the theory of
theta groups) fits into an exact sequence:

0→ Gm → G(Vn)∗L → (EFn

)[pn]→ 0

of group schemes over S. Next, observe that since Vn is étale, the natural morphism

(EFn

)[pn]µ → E[pn]µ

is an isomorphism. Thus, we get a natural inclusion

E[pn]µ ↪→ (EFn

)[pn] ⊆ EFn

If we pull-back the above exact sequence via this inclusion, we thus obtain an exact se-
quence

0→ Gm → Gn → E[pn]µ → 0

of group schemes over S. Note, moreover, that since the commutator of G(Vn)∗L clearly
vanishes on the “cyclic” group scheme E[pn]µ, it follows that Gn is abelian. Also, let
us observe that ±1 acts naturally on all the objects (i.e., EFn

, L, etc.) involved in the
definition of Gn. We thus obtain a natural action of ±1 on Gn itself which is compatible
with the above exact sequence, and induces the trivial action (respectively, the usual action
of ±1) on Gm (respectively, E[pn]µ).
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Now let us write Eµ for the inductive limit of the E[pn]µ. Then it is clear that the
formation of Gn is compatible with the morphisms of the “Verschiebung tower” of E (cf.
§2), hence that we obtain natural inclusions Gn ↪→ Gn+1, which induce the identity on Gm

and the natural inclusion E[pn]µ ↪→ E[pn+1]µ on E[pn]µ. Thus, passing to the limit, we
obtain an exact sequence

0→ Gm → G∞ → Eµ → 0

of group objects over S (equipped with an action by ±1). If we then take the “Cartier
dual” of this exact sequence (i.e., apply the functor Hom(−,Gm)), we obtain an exact
sequence

0→ Eet →M∞ → Z→ 0

of étale local systems on S equipped with an action by ±1. In particular, if we push-
forward this exact sequence by the morphism [2] : Eet → E′

et
def= Eet (i.e., multiplication

by 2 on Eet), the resulting exact sequence

0→ E′
et →M ′

∞ → Z→ 0

admits a unique splitting compatible with the action by ±1 (which acts trivially on Z,
and as ±1 on E′

et). Returning to the category of group objects, we thus obtain that if we
pull-back G∞ by the morphism [2] : E′

µ
def= Eµ → Eµ given by multiplication by 2 on Eµ,

we obtain an exact sequence of group objects

0→ Gm → G′∞ → E′
µ → 0

which admits a unique splitting compatible with the action by ±1. Note that this split-
ting may be interpreted as a symmetric trivialization (where by “symmetric,” we mean
compatible with the action by ±1)

t′L : (L|0E
)|E′

µ
∼= L|E′

µ

which restricts to the identity over 0E . Also, we observe that:

(1) Since t′L is uniquely characterized by the fact that it is symmetric, it
follows that in a neighborhood of infinity, t′L coincides with the trivi-
alization by the section “θ” (cf. the discussion of §4.1, 4.2, in the case
n = 2; χL trivial), since this trivialization is also symmetric.

(2) In general, when p = 2, the trivialization t′L does not descend to Eµ.
Indeed, by (1) above, this assertion may be checked in a neighborhood
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of infinity, where it amounts to the fact that the multiplicative portion
of the character “χ” of [Mzk1], Chapter IV, Theorem 2.1, is nontrivial.

Thus, in particular, (2) implies that the restriction of the unique symmetric splitting of
G′∞ → E′

µ to the kernel µ′
2 ⊆ E′

µ of E′
µ → Eµ differs from the homomorphism µ′

2 → G∞
defined by the fact that L|E′

µ
is obtained via pull-back from Eµ by the unique nontrivial

character µ′
2 → Gm ⊆ G′∞.

Next, observe that since E[p]et/(2) (i.e., the quotient of E[p]et by 2 ·E[p]et) is an étale
local system on S of cyclic groups (i.e., the trivial group if p is odd; the group Z/2Z if
p = 2), it follows that E[p]et/(2) admits a unique generating section over S. Let us write

T̂ → S

for the p-adic completion of the profinite étale covering of S given by the Eet-torsor T → S
of liftings of the unique generating section of E[p]et/(2) relative to the natural surjection
E′

et
∼= Eet → E[p]et/(2). Observe that this torsor T → S also admits the following

interpretation: If p is odd, then letM be the trivial line bundle on Eµ. If p = 2, then the
morphism

[2] : E′
µ → Eµ

may be regarded as a µ2-torsor over Eµ. In particular, this µ2-torsor corresponds to a line
bundle M on Eµ equipped with an isomorphism M⊗2 ∼= OEµ . Then, regardless of the
parity of p, T → S may be interpreted as the Hom(Eµ,Gm) = Eet-torsor of trivializations
of M by a section of M over Eµ that corresponds to a character ∈ Hom(E′

µ,Gm) = E′
et

of E′
µ.

In particular, we see that — regardless of the parity of p — we have a tautological
trivializing section

sM ∈M|T̂

of M over T̂ .

Now write

P def= L ⊗OS
(L|−1

0E
)

Thus, since t′L defines a section of P|E′
µ

on which µ′
2 acts (cf. the discussion above) via

the unique nontrivial character, we thus obtain that t′L may be regarded as a section of
P ⊗M over Eµ. In particular, by applying the trivialization sM of M over T̂ , we see
that t′L defines a trivialization
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tL : (L|0E
)|Eµ|

T̂

∼= L|Eµ|
T̂

over T̂ .

Next, let us write I for the coherent sheaf of ideals on E such that V (I) = 0E , and

Eε
def= V (I2) ⊆ E

for the first nontrivial infinitesimal neighborhood of 0E in E. Note that the difference
between the tautological point ∈ E(Eε ⊗ Z/pnZ) and the origin 0E is annihilated by pn,
hence lies inside E[pn]µ. Thus, we obtain that Eε ⊗ Z/pnZ ⊆ E[pn]µ, hence (by passing
to the p-adic limit) we have

Eε ⊆ E∧
µ

(where E∧
µ denotes the p-adic completion of Eµ). In particular, if we restrict (the p-adic

completion of) tL to Eε, we obtain a trivialization

tε : (L|0E
)|(Eε)

T̂

∼= L|(Eε)
T̂

But observe that such a trivialization is none other than a connection (relative to the
morphism E → S) on the line bundle L at the point 0E . Thus, by the definition of the
Hodge torsor EL (cf. §3), we obtain that tε defines a natural symmetric section

sord : T̂ → EL

of the Hodge torsor EL over T̂ .

Now since E† acts on EL, the section sord thus determines a natural symmetric iso-
morphism

EL|
T̂
∼= E†|

T̂

Moreover, we have the following result:

Lemma 4.1. If we equip EL|
T̂

with the integral structure obtained by transporting

the étale integral structure on E†|
T̂

via the above isomorphism, then, in a neighborhood
of infinity, this integral structure coincides with the étale integral structure defined on EL

in the discussion of §4.2 (for trivial χL). In particular, this integral structure descends
from T̂ to S. Finally, if p is odd, then this integral structure coincides with the integral
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structure obtained by transporting the étale integral structure on E
†
et via the isomorphism

E† ∼= EL discussed at the end of Proposition 3.3, (2).

Proof. Indeed, in a neighborhood of infinity, t′L corresponds to the trivialization θ. More-
over, the torsor T → S corresponds to (the result of pushing out via Z→ Zp) the Z-torsor
of liftings a ∈ 1

2 ·Z of the unique nonzero element of 1
2 ·Z/Z. The trivialization tL obtained

by “dividing” t′L by sM then corresponds to the trivialization in a neighborhood of infinity
given by U−a · θ. Since the coordinate “T” of the discussion of §5 corresponds to the
splitting of EL

Q defined by the connection for which θ is horizontal, it thus follows that
“T − a” corresponds to the splitting of EL

Q defined by the connection for which U−a · θ is
horizontal. In particular, we see that the integral structure on EL|

T̂
obtained by trans-

porting the étale integral structure on E†|
T̂

via the isomorphism EL|
T̂
∼= E†|

T̂
amounts

to that defined by the “
(
T−a
r

)
.” But this integral structure is (by elementary properties

of the binomial coefficient polynomials) the same as that defined by the “
(
T−a′
r

)
” for any

a ∈ 1
2 · Zp that lifts the unique nonzero element of 1

2 · Zp/(2). In particular, this integral
structure is the same as that defined by the “

(
T+ 1

2
r

)
.” Since, in the present situation, χL is

trivial, it thus follows that (in the notation of §5) iχ/n = − 1
2 , hence that the two integral

structures in question coincide. Since this integral structure is independent of the choice
of lifting a, we thus see that this integral structure also descends from T̂ to S, as desired.
Finally, if p is odd, then the fact that the integral structure under consideration coincides

with the integral structure obtained by transporting the étale integral structure on E†et via
the isomorphism E† ∼= EL discussed at the end of Proposition 3.3, (2), follows from the
fact that, if p is odd, then the integral structure defined by the “

(
T+ 1

2
r

)
” is the same as the

integral structure defined by the “
(
T
r

)
.” ©

Remark. It would be nice if a construction of tε could be found that works without the
hypothesis of ordinariness. Such a construction would alleviate the need for treating the or-
dinary and non-ordinary cases separately, as we have done here. Unfortunately, it appears
unlikely that such a construction is possible.

§4.4. The General Case:

In the following discussion, we let S be étale over (M1,0)Zp
, and E → S be the

pull-back from (M1,0)Zp
of the tautological elliptic curve over (M1,0)Zp

. Also, let us

write L def= OE(0E), and Sord ⊆ S for the open subscheme obtained by removing the
supersingular points in characteristic p. In particular, we do not assume that the reduction
modulo p of E → S is a family of ordinary elliptic curves. In the following discussion, we
would like to show that the étale integral structure on EL constructed in Lemma 4.1 over
Ŝord extends (necessarily uniquely) over S. (Here and in the following, “∧” will be used
to denote p-adic completion.)
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Write M for a line bundle of the form L⊗N (for a positive integer N). Since L|EL

is ample on EL, working with integral structures on EL is equivalent to working with
(compatible) integral structures on

HM
def= f∗(M|EL)

(for various N). Note that HM has a natural filtration F r(HM) ⊆ HM, consisting of
those sections of torsorial degree < r. Thus, we have a natural isomorphism

(F r+1/F r)(HM) ∼= τ⊗rE ⊗OS
f∗(M)

In particular, F r(HM) is a vector bundle on S of rank r.

Next, let us observe that, since S is a regular scheme of dimension 2, it follows that
the étale integral structure on EL|

Ŝord constructed in Lemma 4.1 (which gives rise to an
integral structure on HM|Ŝord , F r(HM)|

Ŝord) already defines a (unique!) integral structure
on HM, F r(HM). Thus, we obtain quasi-coherent sheaves Het

M, F r(Het
M) on S which

coincide with HM, F r(HM) over Qp. Moreover, by elementary commutative algebra (cf.,
e.g., [Mzk1], Chapter VI, Lemma 1.1), F r(Het

M) is necessarily a vector bundle of rank r.
Thus, we obtain a morphism

ψr : (F r+1/F r)(Het
M)→ 1

r!
· τ⊗rE ⊗OS

f∗(M)

(which, when it is necessary to stress the dependence of ψr on M, we shall also write
“ψM

r ”). Note that the domain of ψr is necessarily a torsion-free coherent sheaf on S, so it
follows immediately that ψr is injective. It is not immediately clear, however, that ψr is
surjective (although this would follow if, for instance, we knew that the domain of ψr is a
line bundle).

Lemma 4.2. For N sufficiently large, the morphism ψr is surjective.

Proof. If p is odd, then this follows from the final statement in Lemma 4.1, together with
Theorem 1.3, (I). If p = 2, then a more complicated argument is necessary. This argument
will be presented in §8.3. ©

We are now ready to state the main result of the present §:

Theorem 4.3. (Étale Integral Structure on the Hodge Torsors) Let Slog be a
fine, Z-flat noetherian log scheme. Let C log → Slog be a log elliptic curve. Write E ⊆ C

for the open subscheme which is a one-dimensional semi-abelian scheme, and E† → E
for the universal extension. Suppose, moreover, that L is a line bundle on C of relative
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degree 1 over S such that some positive tensor power of L(−[0C ]) is trivial. Thus, there
is a natural ωE-torsor CL → C, equipped with a natural action of E† (cf. §3). Denote
by RL the push-forward of OCL to C, equipped with its natural filtration F r(RL) (given
by considering sections whose torsorial degree is < r). Then there is a natural integral
structure (functorial in Slog)

RL,et ⊆ RL
Q

that satisfies the following properties:

(I) (Subquotients) The integral structure induced on (F r+1/F r)(RL) =
τ⊗rE |C by F r(RL,et) is given by 1

r! · τ
⊗r
E |C .

(II) (Cohomology) The surjection F r(RL,et)→ 1
(r−1)! · τ

⊗r−1
E |C (cf. (I))

induces an isomorphism on cohomology after arbitrary base-change:

Rf1
∗ (F r(RL,et)⊗OS

OT ) ∼= Rf1
∗ (

1
(r − 1)!

· τ⊗r−1
E |C ⊗OS

OT )

(where f : C → S is the structure morphism, and T → S is an arbitrary
— i.e., not necessarily Z-flat — S-scheme). In particular, we have:
Rf1

∗ (RL,et ⊗OS
OT ) = 0.

(III) (Global Sections) We have: f∗(RL,et ⊗OS
OT ) = OT (for any S-

scheme T ).

(IV) (Description at Infinity) When S = Spec(Z[[q
1
n ]][q−1]) (where n ∈

2 · Z>0, and q is the “q-parameter,” defined in a formal neighborhood
of the point at infinity ofM1,0), the integral structure F r(RL,et) is that

given by the “Ret
χ

def=
⊕

j≥0 OC∞
Ŝ

· T [j]
χ ” (for χL corresponding to L)

discussed in §4.2.

(V) (Torsor Structure) RL,et is an OC-algebra which is compatible with
the action of E† on CL.

Moreover, the resulting action of E† on CL
et

def= Spec(RL,et) → C extends to an action of

E
†
et on CL

et which defines a structure of E†et-torsor on EL
et

def= CL
et|E.

Proof. First, observe that by the isomorphisms in the first paragraph of the statement
of Proposition 3.4, it suffices to prove Theorem 4.3 in the case L = OC(0C). Then the
existence of CL

et follows by applying “Proj” to Lemma 4.2. Moreover, Property (I) (re-
spectively, (IV); (V)) follows from Lemma 4.2 (respectively, the construction of CL

et near
infinity in §4.2; by checking that (V) holds near infinity). Properties (II) and (III) may

be checked as in §1 in the case of E†C (by using the analogues in the present context of
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Lemma 1.2 and the various long exact sequences that appeared in §1). The final assertions
concerning the action of E† may be checked near infinity. This completes the proof. ©

Definition 4.4. In the context of Theorem 4.3, if N is a line bundle on C of relative
degree d such that some positive tensor power of N (−d · [0C ]) is trivial, then we shall say
that N is of torsion type.

Finally, before proceeding, we introduce one more notion, which we will use in §8.3.

Let N ≥ 1 be an integer. Then in addition to the integral structures E†C,et, CL
et defined

by the algebras Ret, RL,et in Theorems 1.3, 4.3, we also have intermediate étale integral

structures E†;{N}
C,et , CL;{N}

et defined by forming the spectra of the algebras

Ret;{N} ⊆ Ret; RL,et;{N} ⊆ RL,et

where Ret;{N} (respectively, RL,et;{N}) is the subalgebra ofRet (respectively, RL,et) gener-
ated by FN+1(Ret) (respectively, FN+1(Ret)). Note that the subquotients (F r+1/F r)(−)
of these intermediate integral structures are given by

1
γ(N, r)

· τ⊗rE |C

(cf. property (I) of Theorems 1.3, 4.3), where γ(N, r) is the least common multiple of the
set of integers

c1! · c2! · . . . · ca!

where the c1, c2, . . . , ca ∈ {1, 2, 3, . . . , N} satisfy c1 + c2 + . . . + ca = r.

§5. Construction of the Connection

In this §, we construct (for a given log elliptic curve C log → Slog) a connection on
the pair (E∗

et,L|E∗
et

), where “∗” is either †, or N (for some degree one line bundle N of
torsion type on C), and L|E∗

et
is the pull-back to E∗

et of a line bundle L on C. It is the
elementary study of the properties of this connection that is the main purpose of the present
paper. The main technical tool that allows us to construct this connection is properties
(II) and (III) of Theorems 1.3, 4.3. We begin the discussion of this § by motivating our
construction in the abstract algebraic case by first examining the complex analogue of the
abstract algebraic theory.
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§5.1. Complex Analogue:

Let E be an elliptic curve over C (the field of complex numbers). In this discussion of
the complex analogue, we shall regard E as a complex manifold (rather than an algebraic
variety). Let us write OE (respectively, OER) for the sheaf of complex analytic (respec-
tively, real analytic) complex-valued functions on E. In both the complex and real analytic
categories, we have exponential exact sequences:

0 −→ 2πi · Z −→ OE
exp−→ O×

E −→ 0

0 −→ 2πi · Z −→ OER

exp−→ O×
ER
−→ 0

Since (as is well-known from analysis) H1(E,OER) = H2(E,OER) = H2(E,OE) = 0,
taking cohomology thus gives rise to the following exact sequences:

0 −→ H1(E, 2πi · Z) −→ H1(E,OE) −→ H1(E,O×
E )

deg−→ H2(E, 2πi · Z) = Z −→ 0

0→ H1(E,O×
ER

)
deg−→ H2(E, 2πi · Z) = Z→ 0

In other words, (as is well-known) the isomorphism class of a holomorphic line bundle on E
is not determined just by its degree (which is a topological invariant), but instead also has
continuous holomorphic moduli (given by H1(E,OE) �= 0), while the isomorphism class of
real analytic line bundle is completely determined by its degree. Thus, in particular, the
complex analytic pair (E,L) (i.e., a “polarized elliptic curve”) has nontrivial moduli, and
in fact, even if the moduli of E are held fixed, L itself has nontrivial moduli. (Here, by
“nontrivial moduli,” we mean that there exist continuous families of such objects which
are not locally isomorphic to the trivial family.) On the other hand, (if we write LR

def=
L ⊗OE

OER , then) the real analytic pair (ER,LR) has trivial moduli, i.e., continuous
families of such objects are always locally isomorphic to the trivial family. Put another
way,

The real analytic pair (ER,LR) is a topological invariant of the po-
larized elliptic curve (E,L).

Note that once one admits that ER itself is a “topological invariant” of E (a fact which
may be seen immediately by thinking of ER as H1(E,S1), where S1 ⊆ C× is the unit
circle), (one checks easily that) the fact that LR is also a topological invariant follows

essentially from the fact that H1(E,OER) = 0. Note that if one thinks of E†et as the
algebraic analogue of ER, then the analogue of this fact in the algebraic context is given
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precisely by Theorem 1.3, (II). In the present §, we would like to exploit this fact to show

that the pair (E†et,L|
E
†
et

) (or, more generally, (E∗
et,L|E∗

et
)) has a natural structure of crystal

(valued in the category of “polarized varieties,” or varieties equipped with an ample line
bundle). Thus, in summary, the analogy that we wish to assert here is the following:

topological invariance of (ER,LR) ←→ (E†et,L|
E
†
et

) is a crystal

§5.2. The Schematic Case:

Now let us return to the abstract algebraic context. Let

C log → Slog

be a log elliptic curve as in §1. Moreover, let us assume that we are given a fine log scheme
T log, together with a morphism Slog → T log, such that S is T -flat, and T is Z-flat. Then
we shall write

Slog ×PD,∞
T log Slog

for the (ind-log scheme) given by taking the formal divided power envelope of the diagonal
inside Slog ×T log Slog. Similarly, for n ≥ 0 an integer, we shall write

Slog ×PD,n
T log Slog

for the n-th PD-infinitesimal neighborhood of the diagonal in Slog ×PD,∞
T log Slog. (That is to

say, if the diagonal is defined by a PD-ideal I, then Slog ×PD,n
T log Slog is defined by the n-th

divided power of I.) In the following discussion, T log will be fixed, so we will omit it, in
order to simplify the notation.

Let us write π1, π2 : Slog ×PD,∞ Slog → Slog for the left and right projections, respec-
tively. Note that it follows immediately from the definition of the universal extension as
a parameter space for line bundles equipped with a connection (cf. [Mzk1], Chapter III,
§1), that E† → S is equipped with a structure of log crystal over Slog. This structure of
log crystal on E† → S gives rise to a natural isomorphism:

Ξ
E† : π∗

1(E†) ∼= π∗
2(E†)

between the two pull-backs of E† → S to Slog ×PD,∞ Slog. Moreover, this isomorphism
satisfies the “cocycle condition” with respect to the various pull-backs to the triple product
Slog ×PD,∞ Slog ×PD,∞ Slog. In fact, by considering the universal case (i.e., the case
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when S is étale over (M1,0)Z), if follows from the fact (M1,0)Z is regular of dimension 2
(together with the fact that Slog ×PD,∞ Slog is S-flat) that this isomorphism extends to
an isomorphism between the compactifications

Ξ
E
†
C

: π∗
1(E†C) ∼= π∗

2(E†C)

(cf. [Mzk1], Chapter III, §4).

Now suppose that Slog is log smooth over T log. Then it follows that Slog×PD,∞ Slog is
S-flat, hence, in particular, Z-flat, so it makes sense to speak of integral structures on flat
objects over Slog×PD,∞ Slog. Now if N is a line bundle on C of torsion type (cf. Definition
4.4), then there is a natural identification

CN ⊗Q = E
†
C ⊗Q

(cf. the first Remark following Proposition 3.4). That is to say, CN may be regarded

as “another integral structure” on E
†
C . Similarly, the étale integral structure E†C,et (cf.

Theorem 1.3), as well as the étale integral structure CN
et (cf. Theorem 4.3), may be

regarded as “integral structures on E†C .”

When we wish to discuss these integral structures on a similar footing,
we shall use the notation “∗,” where ∗ ∈ {†,N}.

Thus, if ∗ = †, then E∗
C = E

†
C , E∗

C,et = E
†
C,et, while if ∗ = N , then E∗

C = CN , E∗
C,et = CN

et .

Lemma 5.1. Let ∗ ∈ {†,N}. If ∗ = N , then let us suppose that the following condition
is satisfied:

(∗KS) The derivative

Ω
(Mlog

1,0)Z/Z
|Slog → ΩSlog/T log

of the classifying morphism Slog → (Mlog

1,0)Z of C log → Slog (i.e., the
“Kodaira-Spencer morphism” of the family C log → Slog) factors through
2 · ΩSlog/T log .

Then the isomorphism Ξ
E
†
C

is compatible with the integral structures of E∗
C , E∗

C,et.

Remark. In fact, in the case of E∗
C,et, the assumption (∗KS) may be omitted. This is the

topic of Corollary 8.3, to be proven in §8.1. The reader may check easily that there are no
“vicious circles” in the reasoning.
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Proof. First, we make the following elementary reductions:

(1) By the elementary theory of integrable connections, it suffices to prove
the result over Slog ×PD,2 Slog (as opposed to Slog ×PD,∞ Slog).

(2) Away from infinity, by translating by the unique torsion point α† ∈
E†(S⊗Q) that lifts the torsion point α defined by N (−0E) (cf. Propo-
sition 3.4), we can reduce to the case where N = OC(0C). Note that
here, we use the fact that, at least in characteristic zero (i.e., after ten-
soring with Q) the section α† of E† is necessarily horizontal (since it is
a torsion point of E†).

(3) Near infinity, we can reduce to the universal case, e.g., the case in which
S is smooth of dimension 1 over a ring of the form T log = Spec(Z[ζ])
(where ζ is a root of unity, and T log is equipped with the trivial log
structure), and the q-parameter of the family C log → Slog defines a Z-
flat Cartier divisor D on S. Since such an S is regular of dimension 2,
integral structures over S are determined by their restrictions to S\D.

(4) By combining reduction steps (2) and (3), we thus reduce to the uni-
versal case away from infinity, i.e., where N = OE(0E); T = Spec(Z);
S is étale over (M1,0)Z; and S and T are equipped with the trivial log
structure. In fact, we may also assume that the reduction of E → S
modulo 2 is a family of ordinary elliptic curves.

(5) By replacing the S of (4) by a suitable double cover, we may assume
that there exists a 2-torsion point α ∈ E(S) such that the EN for
N def= OE(α) coincides (as an integral structure) with E†. (Indeed, in
the notation of 4.2, we choose an α such that the resulting “iχ/n” is 1

2 .)
Thus, by translating as in (2) (to make up for the difference between the
N def= OE(0E) of (4) and the N def= OE(α) of the present reduction step),
we reduce to the case where ∗ = †. (Note that passing to a double cover
as above means that even in the universal case, we are, in effect, working
with the differentials “ 1

2 · Ω(Mlog
1,0)Z/Z

” — i.e., not with the differentials

Ω
(Mlog

1,0)Z/Z
. This is what necessitates the assumption (∗KS) in the case

∗ = N . Also note that the fact that it suffices to look only at the
differentials (as opposed to Slog ×PD,∞ Slog in its entirety) follows from
reduction step (1).)

Thus, in summary, it suffices to prove the result in the case of ∗ = †, S étale over (M1,0)Z.

In this case, however, the integral structure of E†et is obtained near infinity by adjoining
the “T [r]” (cf. §1). Thus, it suffices to observe that the indeterminate “T” of the discussion
of §1 is the same, whether pulled back by π1 or π2. This will follow as soon as we verify
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that the canonical section κ
Ŝ

of §1, as well as the invariant differential d log(U) satisfy this
property (i.e., are horizontal). But the horizontality of κ

Ŝ
follows from the fact that it may

be characterized as the unique section which is a group homomorphism. The horizontality
of the differential d log(U) follows from that of the multiplicative coordinate U , which, in
turn, follows from the well-known fact that automorphisms of group schemes of multicative
type (i.e., such as Gm) are rigid. This completes the proof of Lemma 5.1. ©

Remark. Note that, at least in the case ∗ = †, by pulling back from (M1,0)Z, one thus
obtains a structure of log crystal on E∗

C,et — valid even for bases S which are not log
smooth over some T log (where T is Z-flat).

Theorem 5.2. (The Universal Extension as a Polarized Log Crystal) Let ∗ ∈
{†,N}, where (∗KS) is to be satisfied if ∗ = N (cf. Lemma 5.1). Then the étale integral
structure on E∗

C (cf. Theorems 1.3, 4.3) defines an S-scheme E∗
C,et → S, which is equipped

with a natural structure of log crystal with respect to the morphism Slog → T log, i.e., we
have a natural isomorphism:

ΞE∗
C,et

: π∗
1(E∗

C,et) ∼= π∗
2(E∗

C,et)

which satisfies the “cocycle condition” with respect to the various pull-backs to the triple
product Slog ×PD,∞ Slog ×PD,∞ Slog. Moreover, if L is any line bundle on E∗

C,et, and
σ : S → E∗

C,et is a horizontal section of E∗
C,et, then restriction to σ defines a bijection

between isomorphisms
π∗

1L ∼= π∗
2L

(of line bundles on π∗
1(E∗

C,et) ∼= π∗
2(E∗

C,et)) and isomorphisms

π∗
1Lσ ∼= π∗

2Lσ

(of line bundles on Slog ×PD,∞ Slog). Here, we write Lσ def= σ∗L. Moreover, the same
assertion holds if we replace “×PD,∞” by “×PD,n” for any (finite) integer n ≥ 1.

Proof. It remains only to prove the asserted bijection between isomorphisms of line
bundles. Clearly, this assertion is local on S (with respect to, say, the étale topology on
S). Thus, we may assume that S is affine. In this case, the asserted bijection will follow as
soon as we show that there exists at least one isomorphism π∗

1L ∼= π∗
2L, and that any other

isomorphism is obtained by multiplication by an invertible function on Slog×PD,∞Slog. But
since deformations of such line bundles (respectively, deformations of such isomorphisms
of line bundles) are parametrized by H1 (respectively, H0) of the structure sheaf OE∗

C,et
,

we thus see that the desired assertions follow from properties (II), (III) of Theorems 1.3,
4.3. ©

Remark. If ∗ = † (respectively, ∗ = OC(α), for a torsion point α ∈ E(S)), then a natural

choice for the horizontal section σ is the zero section of E†C,et (respectively, section of E∗
C,et
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determined by the torsion lifting α† ∈ E†C,et(S ⊗Q) as in Proposition 3.4). Thus, if one
takes L to be an ample line bundle and fixes a rigidification

Lσ ∼= OS

(so Lσ gets a structure of log crystal arising from the trivial structure of log crystal on
OS) then this rigidification defines (by the bijection of Theorem 5.2) a structure of “log
crystal valued in the category of polarized varieties” on the pair

(E∗
C,et,L|E∗

C,et
)

(where, if one replaces E∗
C,et by E∗

et, then one may replace “varieties” by “smooth group

schemes” (respectively, “E†et-torsors”) when ∗ = † (respectively, ∗ = N )). Put another
way, this rigidification defines a natural integrable logarithmic connection (relative to the
morphism Slog → T log) on the pair (E∗

C,et,L|E∗
C,et

). Finally, we remark that the construc-
tion and demonstration of the elementary properties of this sort of connection constitute
the main goal of the present paper.

Remark. Note that although we used the étale integral structure on E∗
C in order to define a

connection on the pair (E∗
C,et,L|E∗

C,et
), in fact, it is not difficult to prove (cf. the discussion

of “Griffiths semi-transversality” in §8.1) that (except at the prime p = 2) this connection
arises from a connection on the pair (E∗

C ,L|E∗
C
) (i.e., equipped with the usual integral

structure). We believe, however, that because the crucial properties (II), (III) of Theorems
1.3, 4.3, do not hold for the usual integral structure, it is nonetheless much more natural to
consider this connection in the context of the étale integral structure. Another reason for
this is that the important “Schottky-Theoretic Hodge-Arakelov Comparison Isomorphism”
of §6, as well as the related vanishing of the higher p-curvatures discussed in §7, only hold
with respect to the étale integral structure.

Theorem 5.3. (Functoriality) Suppose that the subscheme D ⊆ S (i.e., the pull-back
of the divisor at infinity of (M1,0)Z) forms a Z-flat Cartier divisor on S. Suppose that
C̃ log → Slog is another log elliptic curve, and that we are given an isogeny

Ẽ → E

(which implies that the subscheme “D̃” corresponding to Ẽ also forms a Z-flat Cartier
divisor on S). Let ∗ ∈ {†, {Ñ ,N}}, where (∗KS) is to be satisfied by both E and Ẽ if
∗ = {Ñ ,N} (cf. Lemma 5.1). Here, we assume that Ñ is a degree one torsion type line
bundle on C̃ whose push-forward to C (via Ẽ → E) is equal to N . In the following, when
∗ = {Ñ ,N}, “∗” is to be interpreted as Ñ (respectively, N ) when it appears on tilded
(respectively, non-tilded) objects. Then by pushing forward line bundles with connection
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on Ẽ to E (cf. the functorial definition of the universal extension discussed in [Mzk1],
Chapter III, §1; cf. also the discussion of [Mzk1], Chapter IV, §3), this isogeny defines
morphisms

Ẽ∗ → E∗

which are compatible with the étale integral structures, hence give rise to morphisms
Ẽ∗

et → E∗
et. Finally, if L is a line bundle on E∗

C (whose pull-back to Ẽ∗
C we denote by L̃),

and σ ∈ E∗
C,et(S), σ̃ ∈ Ẽ∗

C,et(S) are compatible horizontal sections, then the bijections (for
L, L̃) between isomorphisms of line bundles appearing in Theorem 5.2 are compatible with
the morphism Ẽ∗

et → E∗
et.

Proof. First, note that the push-forward morphism Ẽ∗ → E∗ is clearly defined over Q;
to see that it is integral over Z, one first reduces to the case ∗ = † by translating as in the
proof of Lemma 5.1. In the case ∗ = †, it suffices to observe this integrality (at a prime p)
for line bundles whose l-th power is trivial (where (l, p) = 1). But this integrality follows
immediately (by raising to the l-th power) for such line bundles from the corresponding
integrality for the trivial line bundle. Moreover, this integrality for the trivial line bundle
follows from the elementary fact that the trace of a differential on Ẽ gives rise to an integral
differential on E. This shows that Ẽ∗ → E∗ is integral.

Since Ẽ† → E† is clearly a group scheme homomorphism, it follows that it is com-
patible with the respective canonical sections “κ

Ŝ
” (cf. the discussion of §1; the proof of

Lemma 5.1). Thus, we conclude the desired integrality of Ẽ†et → E
†
et. More generally, the

integrality of Ẽ∗
et → E∗

et follows by translating as in the proof of Lemma 5.1.

The compatibility with the bijections between isomorphisms of line bundles appearing
in Theorem 5.2 then follows immediately from the facts that: (i) Ẽ∗

et → E∗
et maps σ̃ to σ;

(ii) because of our assumption on D, it suffices to carry out the verification of the asserted
compatiblity on S\D = S\D̃ (over which E∗

et, Ẽ
∗
et coincide with E∗

C,et, Ẽ
∗
C,et, respectively).

This completes the proof. ©

Remark. Note in particular that Theorem 5.3 applies to the case where Ẽ → E is given by
an automorphism of E, such as the automorphism defined by multiplication by −1 (which
we denote by [−1]). Thus, if the line bundles N , L, together with the rigidification of L
(cf. the Remark following Theorem 5.2), are fixed by [−1] (i.e., are symmetric), then we
get a natural action of ±1 on the resulting log crystal (structure on) (E∗

C,et,L|E∗
C,et

).

§6. The Schottky-Theoretic Hodge-Arakelov Comparison Isomorphism

In this §, we prove a simplified version of the “Hodge-Arakelov Comparison Isomor-
phism” of [Mzk1], in a neighborhood of infinity. We then apply this Schottky-Theoretic
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Comparison Isomorphism to prove various technical results concerning this object, e.g.,
that its p-curvature is zero. This property is particularly remarkable in that typically,
for MF∇-objects as in [Falt], §2, zero p-curvature is related to vanishing of the Kodaira-
Spencer morphism (cf. [Katz1,2]). On the other hand, in §8, we shall see that the analogue
of the Kodaira-Spencer morphism in the present context does not vanish. Thus, we see
(even without the aid of a Frobenius action) that the polarized varieties with connection
constructed in the present paper possess properties that are intrinsically different from the
MF∇-objects of [Falt], §2. We will study properties related to the p-curvature in more
detail in §7. In addition, (in the present §) we compute the monodromy of the object with
connection under consideration in a neighborhood of infinity.

In this §, we use the notation of §4.2. The first goal of our discussion is to describe
the connection constructed in Theorem 5.2 explicitly using U , θm. To do this, let us first
observe that the canonical section “κ” (of [Mzk1], Chapter III, Theorem 2.1) defines a
natural morphism

κet
C∞

Ŝ

: C∞
Ŝ
→ (E†C,et)Ŝ

(cf. [Mzk1], Chapter III, Theorem 5.6, as well as the section “κ
Ŝ
” and Theorem 1.3, (IV),

of §1 of the present paper). If we compose this morphism with the natural projection
C̃∞
Ŝ
→ C∞

Ŝ
, then we obtain a morphism

κet

C̃∞
Ŝ

: C̃∞
Ŝ
→ (E†C,et)Ŝ

Note that κet

C̃∞
Ŝ

is horizontal with respect to the natural connection on E†C,et (cf. Theorem

5.2) and the connection on C̃∞
Ŝ

arising from the description of C̃∞
Ŝ

as the pull-back to Ŝ
of the “Néron model” of (Gm)O[[q]][q−1] over O[[q]].

In the following discussion, let us set:

∗ def= Lχ

Note that if we tensor with Q, then (E†C,et)Ŝ ⊗Q = (E∗
C,et)Ŝ ⊗Q. In particular, over Q,

we may regard κet

C̃∞
Ŝ

as a morphism to (E∗
C,et)Ŝ . Also, over Q, the zero section of (E†C,et)Ŝ

defines a horizontal section ε ∈ (E∗
C,et)Ŝ(Ŝ ⊗Q). Now we have the following:

Theorem 6.1. (Explicit Description of the Connection) Denote by ∇alg the con-
nection on (C̃∞

Ŝ
,Lχ

C̃∞
Ŝ

)⊗Q obtained by pulling back via κet

C̃∞
Ŝ

the connection on (E∗
C,et,L

χ
E∗

C,et
)
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determined by some rigidification (cf. Theorem 5.2) at ε. On the other hand, denote
by ∇∞ the connection on (C̃∞

Ŝ
,Lχ

C̃∞
Ŝ

) obtained by declaring the section Ũ iχ · θm to be

horizontal. Then, if we think of ∇alg and ∇∞ as logarithmic connections on the object
Γ(C∞

Ŝ
,LχC∞

Ŝ

) ⊗ Q over Slog, then both ∇alg and ∇∞ are integral (i.e., defined without

tensoring with Q), and, moreover, we have:

∇alg = ∇∞ − ω∞

where ω∞
def= dlog(F)

dq · dq, and F ∈ A× depends on the rigidification chosen. In particular,
these two connections agree up to a scalar differential form.

Proof. Indeed, the point here (cf. the proof of Theorem 5.2) is that the difference between
the two connections on the pair (C̃∞

Ŝ
,Lχ

C̃∞
Ŝ

)⊗Q naturally forms a section

∈ Γ(C̃∞
Ŝ
,O

C̃∞
Ŝ

⊗Q) · dlog(q) = AQ · dlog(q)

(where AQ
def= A⊗Q), i.e., this difference is a constant (relative to the morphism C̃∞

Ŝ
→ Ŝ)

— cf. the application of Theorem 1.3, (III), in the proof of Theorem 5.2. (Note that
Γ(C̃∞

Ŝ
,O

C̃∞
Ŝ

⊗ Q) = AQ follows, for instance, from the fact that the special fiber of

C̃∞
Ŝ
→ Ŝ is an infinite chain of P1’s.) Thus, it suffices to show that the difference between

the connections induced by ∇alg and ∇∞ on LC |ε = L
C̃∞

Ŝ

|ε is as asserted. But note

that ∇∞ is integral by definition, and, moreover, has the property that its restriction to
LC |ε is induced by a trivialization of LC |ε. On the other hand, ∇alg is determined by a
trivialization of LC |ε ⊗Q. Thus, since these two trivialization differ by a factor F ∈ A×

Q,

∇alg and ∇∞ differ by the scalar differential form ω∞
def= dlog(F)

dq · dq. Finally, observe that
since A×

Q = A× ·K× (where K is the finite extension of Q which is the quotient field of the
ring O appearing in the definition of A — cf. §4.1), we may take F to be in A× without
affecting ω∞. This completes the proof. ©

Next, let us write

VGm

def= Γ((Gm)
Ŝ
,O(Gm)

Ŝ

)

for the topological A-module of regular functions on (Gm)
Ŝ
. Thus, VGm is the free topo-

logical A-module on the generators

Uk
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for k ∈ Z. On the other hand, we also have

(V∗
Lχ)

Ŝ

def= Γ((E∗
C,et)Ŝ ,L

χ
(E∗

C,et)Ŝ

)

(cf. the notation “Γ(C [η]
et ,Lχ|C[η]

et
)” used in the discussion at the end of §4.2).

In the following discussion, we would like to consider the restriction morphism

Ξ : (V∗
Lχ)

Ŝ
→ VGm

defined by: (i) first, pulling back sections of Lχ
(E
†
C,et)Ŝ

to C̃∞
Ŝ

via κet

C̃∞
Ŝ

: C̃∞
Ŝ
→ (E†C,et)Ŝ ;

(ii) applying the trivialization “Ũ iχ · θm” discussed above to obtain “usual functions” (i.e.,
as opposed to sections of a line bundle) on C̃∞

Ŝ
; (iii) observing (cf. the discussion of

§4.1) that the resulting functions descend from C̃∞
Ŝ

to C∞
Ŝ

(i.e., may be expressed using

integral powers of U , without using Ũ); and, finally, (iv) restricting functions over C∞
Ŝ

to E
Ŝ

= (Gm)
Ŝ
. (Observe that, although a priori, Ξ is only defined over Q, Ξ is, in

fact, integral (cf. the discussion of §4.1, 4.2), as the notation suggests.) Note that Ξ is
a topological A-morphism of topological A-modules which is, moreover, horizontal up to a
scalar differential (cf. Theorem 6.1) with respect to the natural logarithmic connections
(over Slog) on both sides. Another way to think of the fact that Ξ is “horizontal up to
a scalar differential” is to say that Ξ is projectively horizontal, i.e., compatible with the
natural projective connections on both sides. (We leave the routine formulation of these
various “projective notions” to the reader.)

In the following, in order to analyze Ξ in more detail, we would like to introduce a
natural basis (i.e., the “ζCG

r ” — cf. the discussion at the end of §4.2) of the domain (V∗
Lχ)

Ŝ
of Ξ (following the theory of [Mzk1], Chapter V, §4). In order to discuss this basis, we
must first review the relevant notation of [Mzk1], Chapter V, §4. For integers r ≥ 0, let

λr
def=

[r
2

+
iχ
n

]
(i.e., the greatest integer ≤ the number in brackets), and

F r(Z) def= {0− λr, 1− λr, . . . , r − 1− λr} ⊆ Z

Thus, F r+1(Z) ⊇ F r(Z) is obtained from F r(Z) by appending one more integer “k[r]”
directly to the left/right of F r(Z) (where “left/right” depends only on the parity of r). In
particular, the map Z≥0 → Z given by

r �→ k[r]
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is a bijection. Also, let us write

Ψ(k) def=
1
2
k2 +

iχ
n
k

(cf. the discussion at the beginning of [Mzk1], Chapter VIII, §3).

Now we are ready to discuss the basis referred to above. This (topological A-) basis
of (V∗

Lχ)
Ŝ

is given by the “congruence canonical Schottky-Weierstrass zeta functions”:

ζCG
0 , ζCG

1 , . . . , ζCG
r , . . . ∈ (V∗

Lχ)
Ŝ

which are uniquely determined by their images under Ξ:

Ξ(ζCG
r ) =

∑
k∈Z

(
k + λr
r

)
· χM(ket) · q

1
2k

2+
iχ
n k · Uk

(cf. [Mzk1], Chapter V, Theorem 4.8). Moreover, ζCG
r ≡ 0 modulo qΨ(k[r]). Thus, we

obtain sections

ζ̃CG
r

def= q−Ψ(k[r]) · ζCG
r ∈ q−∞ · (V∗

Lχ)
Ŝ

In particular, the ζ̃CG
r define a new integral structure on (V∗

Lχ)
Ŝ
, which we denote by

(VGP
Lχ )

Ŝ
= ΓGP((E†C,et)Ŝ ,L

(E
†
C,et)Ŝ

)

(where the “GP” stands for “Gaussian poles,” i.e., the poles arising from the q−Ψ(k[r]) —
cf. [Mzk1], Chapter VI, Theorem 4.1, and the Remarks following that theorem). Thus, in
particular, the ζ̃CG

r form a topological A-basis for (VGP
Lχ )

Ŝ
, and Ξ factors through (VGP

Lχ )
Ŝ

to form a morphism

ΞGP : (VGP
Lχ )

Ŝ
→ VGm

Finally, we recall from the theory of [Mzk1] (Chapter V, §4, and Chapter VIII, §3), that
the ΞGP(ζ̃CG

r ) form a basis of VGm . Indeed, this follows by observing that, modulo q
1
n ,

ΞGP(ζ̃CG
r ) ≡ (∈ µn) · Uk[r] + . . .

where “. . .” is either (depending on the parity of r) zero or a term of the form (∈ µn) ·
Uk[r+1] — i.e., modulo q

1
n , it is clear that the ΞGP(ζ̃CG

r ) form a basis of VGm . In particular,
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since (by definition) the ζ̃CG
r form a basis of (VGP

Lχ )
Ŝ
, we thus obtain that ΞGP is an

isomorphism.

Thus, in summary, we obtain the following “Hodge-Arakelov-type Comparison Iso-
morphism” (i.e., a comparison isomorphism reminiscent of the main theorem of [Mzk1]),
except in the present “Schottky-theoretic context” (i.e., the context of the Schottky uni-
formization “E = Gm/q

Z”):

Theorem 6.2. (Schottky-Theoretic Hodge-Arakelov Comparison Isomorphism)

Let O be a Zariski localization of the ring of integers of a finite extension of Q; n def= 2m;

A
def= O[[q

1
n ]]; S

def= Spec(A); Ŝ
def= Spf(A)

(where q is an indeterminate, and we regard A as equipped with the q-adic topology). Let
E → S be the degenerating elliptic curve whose Tate parameter is given by q, and
C → S its natural semi-stable compactification. Write LC def= OC(0C) for the line bundle
on C defined by the zero section, and assume that we are given a character

χL ∈ Hom(Zet × µn,µn)

(to be thought of as a “twist” applied to LC). Set ∗ def= Lχ, and equip the extension of the
universal extension E† → E over C with the étale integral structure for the Hodge
torsor corresponding to Lχ (cf. Theorem 5.2) to form E∗

C,et → S. Let

VGm

def= Γ((Gm)
Ŝ
,O(Gm)

Ŝ

); (V∗
Lχ)

Ŝ

def= Γ((E∗
C,et)Ŝ ,L

χ
C |(E∗

C,et)Ŝ

)

Then pull-back via the canonical section κet
C∞

Ŝ

: C∞
Ŝ
→ (E†C,et)Ŝ (cf. [Mzk1], Chapter

III, Theorem 5.6, as well as the section “κ
Ŝ
” and Theorem 1.3, (IV), of §1 of the present

paper), together with the natural trivialization of LχC over the Schottky uniformization of
C̃ (where C̃ → C is the finite covering obtained by extracting an n-th root of the standard
multiplicative coordinate U on the Schottky uniformization of C, and C̃ has “q-parameter”
equal to q

1
n ), defines a natural restriction morphism

Ξ : (V∗
Lχ)

Ŝ
→ VGm

which is projectively horizontal. Here, by “horizontal,” we mean with respect to the
logarithmic connection (over Slog) on the left-hand side defined by Theorem 5.2 and the
logarithmic connection (over Slog) on the right-hand side defined by the fact that Gm is
defined over O. By “projectively,” we mean up to the scalar differential ω∞ (cf. Theorem
6.1). If one equips the domain (V∗

Lχ)
Ŝ

of Ξ with the integral structure obtained by allowing
“Gaussian poles,” then Ξ defines a morphism

ΞGP : (VGP
Lχ )

Ŝ
→ VGm
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which is an isomorphism over A.

Proof. All of the assertions follow from the above discussion. ©

Remark. In some sense, the comparison isomorphism of Theorem 6.2 may be regarded as
the prototype of the comparison isomorphism of [Mzk1] (cf. the discussion in the Introduc-
tion).

Remark. One superficial difference between the comparison isomorphisms of Theorem 6.2
and [Mzk1] is that unlike the case with the main result of [Mzk1], in the present context,
the comparison isomorphism holds even without twisting (i.e., even for trivial χL, which
corresponds to taking the “η” of [Mzk1] to be the origin 0E). This has to do with the fact
that since here we restrict to Gm, rather than to a finite set of torsion points, the case
treated here corresponds (from the point of view of [Mzk1]) to the case of twisting by a
sort of “generic (hence nontrivial) η ∈ Gm.”

Remark. Another way to make an isomorphism out of Ξ (i.e., instead of introducing “Gaus-
sian poles” to form ΞGP) is to make use of the theta convolution — i.e., convolution (relative
to Fourier expansions on Gm) with the “theta function” ζCG

0 — cf. the “theta-convoluted
comparison isomorphism” of [Mzk2], Theorem 10.1. Since the definitions and proofs of
the analogue in the present “Schottky-theoretic context” (i.e., as opposed to the “discrete
context” of [Mzk1,2]) of [Mzk2], Theorem 10.1, are entirely similar (only technically much
simpler!) to those of [Mzk2], we leave their precise formulation (in the present “Schottky-
theoretic context”) to the reader.

Corollary 6.3. (Description of Monodromy) The monodromy at∞ of ((V∗
Lχ)

Ŝ
,∇(V∗

Lχ )
Ŝ

)
(i.e., (V∗

Lχ)
Ŝ

equipped with its natural connection) in the logarithmic tangent direction
∂

∂log(q) is an operator which may be represented as an infinite diagonal matrix whose diag-
onal entries are given by the Ψ(k[r]), for r ≥ 0.

Proof. Clearly, VGm has zero monodromy (since it arises from an object defined over
O). Thus, since ΞGP is an isomorphism, we obtain that (VGP

Lχ )
Ŝ

also has zero monodromy.
(Note that “projectively” may be ignored as far as monodromy computations are concerned
since the differential ω∞ of Theorem 6.1 has zero monodromy.) On the other hand, since
the ζ̃CG

r form a basis of (VGP
Lχ )

Ŝ
, it thus follows that it suffices to compute the monodromy

using the basis ζCG
r = qΨ(k[r]) · ζ̃CG

r of (V∗
Lχ)

Ŝ
. Since ∂

∂log(q) (q
Ψ(k[r])) = Ψ(k[r]) · qΨ(k[r]),

Corollary 6.3 follows immediately. ©

Corollary 6.4. (Vanishing of p-Curvature) The p-curvature (cf. [Katz1], §5,6, for
a discussion of the basic theory of the p-curvature) of ((V∗

Lχ)
Ŝ
,∇(V∗

Lχ )
Ŝ

)⊗Fp is identically
zero.
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Proof. Since inverting q does not affect the issue of whether or not the p-curvature
vanishes identically, it suffices to prove the result for (VGP

Lχ )
Ŝ
. Moreover, since ΞGP is a

projectively horizontal isomorphism, and the differential ω∞ is the logarithmic exterior
derivative of a regular function F ∈ A×, it suffices to prove the result for VGm . But this is
clear, since VGm admits a horizontal basis (given by the Uk, for k ∈ Z). ©

Remark. As remarked earlier, the property of Corollary 6.4 is particularly remarkable in
that typically, forMF∇-objects as in [Falt], §2, zero p-curvature is related to vanishing of
the Kodaira-Spencer morphism (cf. [Katz2]). In the present situation, however, (cf. §8) the
corresponding Kodaira-Spencer morphism does not vanish. For a substantial generalization
of Corollary 6.4, we refer the reader to §7 below.

§7. Crystalline Theta Expansions

In this §, we generalize Corollary 6.4 to show that not only the p-curvature, but
also the “higher p-curvatures” (cf. [Mzk3], Chapter II, §2.1) of the object considered in
Corollary 6.4 vanish identically. This property will be used in §8 to complete the proof of
Lemma 4.2. Moreover, in the present §, we shall observe that the results that we obtain
are sufficient to give a sort of crystalline analogue of the well-known Fourier expansion
“
∑

q
1
2k

2 ·Uk” of a theta function in a formal neighborhood of the divisor at infinity of the
moduli stack of log elliptic curves which is valid in a formal neighborhood of an (essentially)
arbitrary point (cf. Corollary 7.6 below for details) of this moduli stack (i.e., not just the
point at infinity). This construction is of interest in that, by contrast to the complex case,
where the well-known Fourier expansion “

∑
q

1
2k

2 ·Uk” is known to be valid not just near
infinity, but over the entire upper half-plane, up till now (to the knowledge of the author)
no analogue of this expansion has been given which is valid in a formal neighborhood of an
arbitrary point of the moduli stack of elliptic curves.

§7.1. Generalities on Higher p-Curvatures:

In the following, we review what is necessary of the theory of higher p-curvatures
developed in [Mzk3], Chapter II, §2.1. In particular, it is not necessary (for the purposes
of this paper) for the reader to have any knowledge of the theory of [Mzk3].

Let p be a prime number. Let A be a Zp-flat complete topological ring equipped with

the p-adic topology (i.e., the topology defined by powers of the ideal p ·A), and k def= A⊗Fp.
Also, let us suppose that we are given a p-adic formal scheme S which is formally smooth
of relative dimension 1 over A.

In the following discussion, we would like to develop the theory of pn-curvatures of
certain types of sheaves equipped with a connection on S. First, let us fix an integer
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n ≥ 1. Let EZ/pnZ be a locally free (though not necessarily of finite rank!) quasi-coherent

sheaf of OSZ/pnZ
-modules (where SZ/pnZ

def= S ⊗ Z/pnZ). Assume, moreover, that EZ/pnZ

is equipped with a connection ∇ (relative to the morphism S → Spf(A)). Then the p-
curvature of (EFp

,∇) (where EFp

def= EZ/pnZ ⊗ Fp) is a section

P1 ∈ Γ(S,ΩF
SFp
⊗OS

EndOS
(EFp

))

(cf. [Katz1], §5,6, for a discussion of the basic theory of the p-curvature). Here and in the
following discussion, all differentials are over A, and we denote the result of base-changing
objects on SFp

via the j-th power of the Frobenius morphism ΦS : SFp
→ SFp

by means

of a superscript Fj . Also, let us write O[0] def= OSFp
, and (for any integer m ≥ 0)

O[m] ⊆ O[0]

for the k-subalgebra of O[0] generated by the image of the pm-th power map on O[0].

One basic property of the p-curvature is the following:

This section P1 ≡ 0 if and only if the natural morphism

E∇Fp
⊗O[1] O[0]→ E

(where E∇Fp
⊆ EFp

is the O[1]-submodule of horizontal sections) is an
isomorphism.

Thus, if P1 ≡ 0, the restriction ∇|EFp
of the connection ∇ to EFp

is uniquely determined
by the property that it vanishes on E∇Fp

.

In particular, the pj-curvature has been defined for j = 1. Let us write E [0] def= EFp
;

E [1] def= E∇Fp
⊆ E [0]. Denote the connection induced by ∇ on E [0] by ∇[0]. Next, assume

that:

We are given a positive integer m ≤ n such that the pm
′
-curvature has

been defined and, moreover, vanishes identically for all m′ < m.

Suppose, moreover, that under these circumstances:

(1) For all 1 ≤ m′ < m, we have defined an O[m′]-submodule E [m′] ⊆ E [0].

(2) For all 0 ≤ m′ < m−1, we have constructed a connection ∇[m′] on the
O[m′]-module E [m′] whose p-curvature is zero.

(3) For all 1 ≤ m′ < m, E [m′] = E [m′ − 1]∇[m′−1].
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(4) For all 1 ≤ m′ < m, E [m′] is generated Zariski locally on SZ/pnZ by
sections that lift to sections of EZ/pnZ which are horizontal modulo pm

′
.

Observe that:

(∗LF) Since O[0] is finite and flat over O[m′], and EZ/pnZ is locally free, prop-
erty (3) above implies that, as an O[m′]-module, E [m′] enjoys the prop-
erty that some direct sum of a finite number of copies of E [m′] is locally
free.

Then we would like to construct the pm-curvature of EZ/pnZ, as follows.

First, we would like to construct a connection ∇[m− 1] on E [m− 1]. If sFp
is a local

section of E [m−1], then let sZ/pnZ be a lifting of sFp
to EZ/pnZ which is horizontal modulo

pm−1 (cf. (4) above). Then ∇(sZ/pnZ) is divisible by pm−1, so it makes sense to define

∇[m− 1](sFp
) def= Cm−1(p−(m−1) · ∇(sZ/pnZ) modulo p)

(where Cm−1 : E [0]⊗O[0] ΩSFp
→ E [m− 1]⊗O[m−1] ΩFm−1

SFp
is the (m− 1)-th power of the

Cartier operator (cf. [Katz1], Theorem 7.2, for basic properties of the Cartier operator);
note that this Cartier operator is defined precisely because — cf. (2) above — the p-
curvature of ∇[m′] ≡ 0 for m′ < m − 1). It is an easy exercise using the observation
(∗LF), property (4) above, and Lemma 7.1 below to show that this definition of ∇[m −
1](sFp

) is independent of the choice of lifting sZ/pnZ. Moreover, it follows immediately
from the definition of ∇[m−1](sFp

) that this correspondence sFp
�→ ∇[m−1](sFp

) defines
a connection ∇[m− 1] on the O[m− 1]-module E [m− 1].

We then define the pm-curvature of EZ/pnZ to be the p-curvature of (E [m−1],∇[m−1]).
Moreover, one checks easily (using the observation (∗LF), together with Lemma 7.2 below
for property (4)) that when this pm-curvature is identically zero, (if we set E [m] def= E [m−
1]∇[m−1], then) the above properties (1), ..., (4) are satisfied when “m” is replaced by
m+ 1. Thus, by induction, we obtain a definition of the pm-curvature for all m ≤ n.

The following lemmas are well-known:

Lemma 7.1. Let f be a local section of OSZ/pnZ
which satisfies df ≡ 0 modulo pn−1.

Suppose that t is a local parameter on S (relative to A). Then f may be written as a power
series in terms of the form

c · ta

where c ∈ A, a ∈ Z≥0, and c · a ≡ 0 modulo pn−1. In particular, we have Cn(p−(n−1) ·
df(modulo p)) = 0 (where Cn is the n-th power of the Cartier operator).

Proof. The first assertion is clear. Moreover, it implies that θ def= p−(n−1) · df (modulo p)
is a power series in terms of the form

52



(p−(n−1) · c · a) · ta−1dt

But Cn is nonzero only on those terms for which a is divisible by pn; moreover, for such
terms, the coefficient (p−(n−1) · c · a) ≡ 0 (modulo p). This completes the proof. ©

Lemma 7.2. Let θ be a local section of the sheaf of differentials ΩSFp
which satisfies

Cn(θ) = 0. Then there exists a local section f of OSZ/pnZ
such that df = pn−1 · θ.

Proof. Suppose that t is a local parameter of S over A. Let K def= Ker(Cn); write I for
the image modulo p of p−(n−1) · d on those sections of OSZ/pnZ

whose exterior derivative
is 0 modulo pn−1. Then both K and I form locally free O[n]-submodules of O[0] · dt. It
suffices to show that these two submodules coincide. But observe that (by faithfully flat
descent) this may be shown after passing to power series in t. Thus, it suffices to show the
existence of a power series f such that df = pn−1 · θ.

Observe that θ may be written as a power series in terms of the form

c · ta−1 · dt

where c ∈ A, a ∈ Z≥1\(pn · Z≥1). Thus, if we take f to be an appropriate power series in
terms of the form

(pn−1 · a−1) · c · ta

(where we observe that (pn−1·a−1) ∈ Zp), we obtain a solution to the equation df = pn−1·θ,
as desired. ©

Remark. Note that if, for instance, 1 < m ≤ n, then it does not make sense to state that
“the pm-curvature of EZ/pnZ is zero” in the absence of any hypothesis on the p-curvature of
EZ/pnZ. It does, however, make sense to state that “the pj-curvature of EZ/pnZ is zero for
all j ≤ m.” That is to say, this statement is to be interpreted as meaning that, first of all,
the p-curvature of EZ/pnZ is zero, which (by the above discussion) allows us to define the
p2-curvature; then that the p2-curvature is zero, which allows us to define the p3-curvature,
etc. (up to pm).

We summarize the above discussion as follows:

Theorem 7.3. Let A be a Zp-flat complete topological ring equipped with the p-adic

topology; k def= A ⊗ Fp; and S be a p-adic formal scheme which is formally smooth of
relative dimension 1 over A. Let EZ/pnZ be a locally free (though not necessarily of finite
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rank!) quasi-coherent sheaf of OSZ/pnZ
-modules (for some integer n ≥ 1), equipped with a

connection ∇ over A. Then the pj-curvature of (EZ/pnZ,∇) is ≡ 0 for all j ≤ n if and
only if EZ/pnZ is generated Zariski locally on SZ/pnZ by horizontal sections.

Remark. Note, in particular, that the various pm-curvatures (when they are defined) are
sections of locally free sheaves on SFp

. Thus, if they vanish over, say, a formal neighborhood
of some point of SFp

, then it follows that they vanish over the schematic closure in SFp
of

that formal neighborhood.

Corollary 7.4. Let S and A be as in Theorem 7.3. Let E be a quasi-coherent sheaf of
OS-modules such that EZ/pnZ is locally free (not necessarily of finite rank!) over SZ/pnZ

for all integers n ≥ 1. Suppose, moreover, that E is equipped with a connection ∇ over
A whose pn-curvature vanishes for all n ≥ 1. Let σ ∈ S(A) be an A-valued point of S.
Write Sσ for the formal completion of S along σ. Then there is a unique isomorphism of
OSσ

-modules
(E|σ)⊗̂AOSσ

∼= E|Sσ

(where “⊗̂” denotes the topological tensor product) which (i) is equal to the identity when
restricted to σ; and (ii) maps E|σ on the left-hand side into the set of horizontal sections
on the right-hand side.

Proof. Since E is topologically locally free (with respect to the p-adic topology), and the
assertion in question is compatible with Zariski localization on Spec(A), we may assume
that E|σ is a topologically free A-module. To prove the existence of a unique isomorphism
as asserted, it suffices to show that for any section ε of E|σ, there exists a unique horizontal
section ε̃ of E|Sσ

lifting ε. Write I for the sheaf of ideals defining the subobject σ inside
Sσ. By Theorem 7.3, it follows that for any n ≥ 1, there exists a section εn of Sσ which
lifts ε and whose reduction modulo pn is horizontal. Moreover, by the “description of ‘f ’
as a power series” given in Lemma 7.1, it follows that as n → ∞, the εn converge in the
(Ip, p)-adic topology to a unique horizontal section ε of E|Sσ

, as desired. ©

Corollary 7.5. Let A be a Z-flat commutative ring, and S a smooth A-scheme of relative
dimension 1 over A. Let E be a quasi-coherent sheaf of locally free (not necessarily of finite
rank!) OS-modules. Suppose, moreover, that E is equipped with a connection ∇ over A
such that for every prime number p, the pn-curvature of (EZ/pnZ,∇Z/pnZ) vanishes for all
n ≥ 1. Let σ ∈ S(A) be an A-valued point of S. Write Sσ for the formal completion of S
along σ. Then there is a unique isomorphism of OSσ

-modules

(E|σ)⊗̂AOSσ
∼= E|Sσ

(where “⊗̂” denotes the topological tensor product) which (i) is equal to the identity when
restricted to σ; and (ii) maps E|σ on the left-hand side into the set of horizontal sections
on the right-hand side.
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Proof. Write SPD
σ for the (completed) divided power envelope of σ inside S. Thus, if t

is a local parameter for S over A at σ (i.e., such that t = 0 on σ), then OSPD
σ

consists of
power series of the form

∑
n≥0

cn ·
tn

n!

(where cn ∈ A). In particular, it follows from the elementary theory of integrable connec-
tions that we get a unique isomorphism

(E|σ)⊗̂AOSPD
σ

∼= E|SPD
σ

satisfying (i), (ii). To check that this isomorphism is, in fact, defined over OSσ
(as asserted

in Corollary 7.5) — i.e., to check that the denominators do not, in fact, appear — it suffices
to see that this holds after S and A are replaced by their p-adic completions. But then
the assertion to be checked is precisely the content of Corollary 7.4. ©

§7.2. Application to Theta Expansions:

Now we apply the theory of the above discussion to the objects considered in Corollary
6.4.

Corollary 7.6. (Crystalline Theta Expansions) Let A be a Z-flat commutative
ring, and S a smooth A-scheme of relative dimension 1 over A. Let f : E → S be an
elliptic curve over S, equipped with an ample line bundle L of the form OE(η), where
η ∈ E(S) is a torsion point. Also, let us assume that for every prime number p, the
generic member of this family of elliptic curves in each irreducible component of SFp

is
ordinary (i.e., has nonzero Hasse invariant), and that the condition (∗KS) of Lemma 5.1
is satisfied for T def= Spec(A) (equipped with the trivial log structure). Set ∗ def= L, and
write ∇VL for the connection on

VL def= f∗(LE∗
et

)

determined by Theorem 5.2 for some choice of a rigidification of L at the origin 0E of E.
Then VL is locally free on S, and the pn-curvature of the pair (VL,∇VL) is ≡ 0 for all
integers n ≥ 1.

Let σ ∈ S(A) be an A-valued point of S. Write Sσ for the formal completion of S
along σ. Then there is a unique isomorphism of OSσ

-modules

(VL|σ)⊗̂AOSσ
∼= VL|Sσ
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(where “⊗̂” denotes the topological tensor product) which (i) is equal to the identity when
restricted to σ; and (ii) maps VL|σ on the left-hand side into the set of horizontal sections
on the right-hand side.

In particular, the expansion of a section of F 1(VL)|Sσ
= f∗(L)|Sσ

as a topological
OSσ

-linear combination of elements of some basis of VL|σ may be regarded as a sort of
“crystalline analogue” of the usual expansion “

∑
q

1
2k

2 · Uk” of a theta function (cf. the
Remark below for more details).

Remark. It is natural to regard the expansion discussed at the end of the statement of
Corollary 7.6 as a “crystalline analogue” of the usual expansion “

∑
q

1
2k

2 · Uk” of a theta
function for the following reason: The usual expansion is precisely an expansion in terms
of the Uk (for k ∈ Z), which, as we saw in §6, form (via the isomorphism ΞGP) a horizontal
(topological) basis of VL in a formal neighborhood of infinity.

Proof. (of Corollary 7.6) The proof of the vanishing of the higher p-curvatures is entirely
the same as that of Corollary 6.4 (cf. also the Remark following Theorem 7.3) — i.e., one
uses the projectively horizontal isomorphism ΞGP of Theorem 6.2, together with the fact
that VGm admits a horizontal basis, given by the Uk, for k ∈ Z (cf. Theorem 7.3). Note
that here we use the assumption that the family of elliptic curves in question is generically
ordinary in characteristic p in order to reduce (cf. the Remark following Theorem 7.3) to
the situation studied in §6 in a formal neighborhood of infinity. The remaining assertions
are formal consequences of Corollary 7.5. ©

Remark. Although in Corollary 7.6, we took L to be of degree 1, it is not difficult to derive
from Corollary 7.6 (using the theory of theta groups — cf. the discussion of §8.1) the
corresponding result for L of arbitrary degree. We leave the routine details to the reader.

§8. “Griffiths Semi-Transversality”

In this §, we investigate the relationship between the connections defined in §5 and
the Hodge filtrations (determined by torsorial degree) on various spaces of functions on the
universal extension. In some sense, the central phenomenon here is the fact that unlike
many well-known objects with similar structures for which the connection gives rise to
jumps of length 1 in the Hodge filtration (i.e., “Griffiths transversality”), in the present
situation, the connection gives rise to jumps of length 2 in the Hodge filtration. We refer
to this phenomenon as “Griffiths semi-transversality.” At a more concrete level, this
phenomenon may be thought of as the quadratic (i.e., nonlinear) nature of the exponent of
the q-parameter in the well-known theta expansion “

∑
q

1
2k

2 ·Uk.” Moreover, it turns out
that this phenomenon gives rise to interesting (non-trivial) Kodaira-Spencer morphisms,
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as well as Hasse-type invariants. In the present §, in addition to calculating these objects,
we apply these calculations at the prime p = 2 to complete the proof of Lemma 4.2 of §4.4.

§8.1. The Kodaira-Spencer Morphism of the Crystalline Theta Object:

In the following discussion, we use the notation of §5.2. Moreover, we let T def= Spec(Z)
(equipped with the trivial log structure), so S is smooth over Z, and we assume that the
log structure on S is defined by a Z-flat divisor with normal crossings ⊆ S, and that the
condition (∗KS) of Lemma 5.1 is satisfied. (For instance, a typical example of such an Slog

is given by any étale morphism S → (M1,0)Z[ 12 ] to the moduli stack of log elliptic curves
over Z[12 ].)

Next, let us assume that we are given a degree one ample line bundle L of torsion type
(cf. Definition 4.4) on C (i.e., the semi-stable compactification of E). Note that

R1f∗(L) = 0

(where, in the following discussion, we shall (by abuse of notation) denote all structure
morphisms to S by “f”). Indeed, this follows from Serre duality, and the fact that f∗(ωE⊗
L−1) = 0, since L is ample. Also, let us assume that we are given a rigidification

Lε ∼= OS

(where Lε is the restriction of L to the zero section of C → S) at the zero section of C → S.

Set ∗ def= L. By Theorem 5.2, we thus obtain a logarithmic connection on the pair

(E∗
C,et,LE∗

C,et
)

(where LE∗
C,et

def= L|E∗
C,et

), regarded as a family of polarized varieties over S. Since taking
global sections is a natural operation, we thus get an induced logarithmic connection ∇VL
on the quasi-coherent sheaf of OS-modules given by

VL def= f∗(LE∗
C,et

)

Note that in addition to the connection ∇VL , the sheaf VL is also equipped with a “Hodge
filtration” F r(VL) induced by the filtration on RL,et (cf. Theorem 4.3) with subquotients
given by

(F r+1/F r)(VL) =
1
r!
· τ⊗rE ⊗OS

f∗(L)
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(where we use the fact that R1f∗(L) = 0).

Remark. Note that the data (VL, F r(VL),∇VL) is reminiscent of the “MF∇-objects” of
[Falt], §2. There are, of course, various obvious differences: e.g., VL is “a vector bundle of
infinite rank”; we have yet to define a Frobenius action (though the author hopes to address
this issue in a future paper). One more subtle difference is the behavior of the connection
∇VL relative to the Hodge filtration — cf. the discussion of “Griffiths semi-transversality”
below. Yet another more subtle difference is the relationship between the p-curvature (cf.
the Remark following Corollary 6.4) and the Kodaira-Spencer morphism (to be studied in
detail below). Nevertheless, the analogy with the MF∇-objects of [Falt], §2, is one of the
fundamental motivations for the present paper. It is the hope of the author to develop this
point of view further in future papers.

Note that if L and its rigidification are symmetric (i.e., preserved by the natural action
of ±1 on C), then ±1 acts naturally on (VL, F r(VL),∇VL). If, moreover, 2 is invertible on
S, then considering eigenspaces for this action gives rise to a natural splitting

VL = VL+ ⊕ VL−

which is compatible with F r(VL) and ∇VL . In particular, since the relative degree of L
over S is one, ±1 acts trivially on F 1(VL) = f∗(L), while −1 acts as −1 on τE . Thus, in
this case, ±1 acts as (±1)r on

(F r+1/F r)(VL) =
1
r!
· τ⊗rE ⊗OS

f∗(L)

i.e., for ‡ ∈ {+,−},

(F r+1/F r)(VL‡) = (F r+1/F r)(VL)

if the sign of (−1)r is equal to ‡, and (F r+1/F r)(VL‡) = 0 otherwise.

Next, we would like to consider the extent to which the connection ∇VL preserves the
Hodge filtration. First, let us recall the isomorphism

Ξ
E
†
C

: π∗
1(E†C) ∼= π∗

2(E†C)

of the discussion preceding Lemma 5.1. Note that this isomorphism is well-known to
preserve the Hodge filtration on O

E
†
C

up to a jump in the index which is ≤ 1, i.e., F r(−)

on one side is not necessarily sent into F r(−) on the other, but it is sent into F r+1. This
property of “connections giving rise to jumps of magnitude ≤ 1” is often referred to as
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Griffiths transversality (cf., e.g., [Falt], §2). In the case of the universal extension, this
Griffiths transversality follows easily from the definition of the universal extension as the
moduli space of certain line bundles with connection (cf. [Mzk1], Chapter III, §1).

Note that since E†C and E∗
C,et are the same in characteristic zero, it follows that

ΞE∗
C,et

: π∗
1(E∗

C,et) ∼= π∗
2(E∗

C,et)

(cf. Theorem 5.2) also satisfies Griffiths transversality.

Now let us consider the connection on the pair (E∗
C,et,LE∗

C,et
). That is to say, we

would like to compare π∗
1LE∗

C,et
with π∗

2LE∗
C,et

via ΞE∗
C,et

, over the base Slog ×PD,2 Slog.
Write I for the ideal defining the diagonal in Slog ×PD,2 Slog. Then let us observe that
both π∗

1LE∗
C,et

and π∗
2LE∗

C,et
define line bundles on π∗

2(E∗
C,et) which agree modulo I and

which are defined by transition functions that belong to F 2(−) of the structure sheaf of
π∗

2(E∗
C,et). Indeed, the transition functions defining π∗

2LE∗
C,et

belong to F 1(−) ⊆ F 2(−)
since this line bundle is pulled back from the line bundle π∗

2L on π∗
2C. On the other hand,

π∗
1LE∗

C,et
, regarded as a line bundle on π∗

1(E∗
C,et), is (by the same reasoning) defined by

transition functions that belong to F 1(−) of the structure sheaf of π∗
1(E∗

C,et), but these
transition functions are mapped into F 2(−) of the structure sheaf of π∗

2(E∗
C,et) (by the

Griffiths transversality of ΞE∗
C,et

).

Thus, in summary, in order to obtain an (or — equivalently, by Theorem 4.3, (III)
— the unique) isomorphism between π∗

1LE∗
C,et

and π∗
2LE∗

C,et
, it suffices to introduce F r(−)

for a sufficiently large r such that the deformation class that gives the difference between
these two line bundles vanishes. Since (by the discussion of the preceding paragraph) this
deformation class lies in F 2(−), we conclude, by Theorem 4.3, (II), that it suffices to pass
to F 3(−), in order to cause this deformation to vanish. Thus, in summary, we started with
an object (i.e., π∗

1LE∗
C,et

) which lies in F 1(−) on π∗
1(E∗

C,et), then transported this object
via ΞE∗

C,et
to an object lying in F 2(−) on π∗

2(E∗
C,et) which, when regarded as an object

lying in F 3(−) = F 1+2(−) (on π∗
2(E∗

C,et)), is isomorphic to π∗
2LE∗

C,et
. That is to say, we

have shown the following:

The connection on (E∗
C,et,LE∗

C,et
) preserves the Hodge filtration up to

jumps of magnitude ≤ 2.

We will refer to this property of preserving the Hodge filtration up to jumps of magnitude
≤ 2 as Griffiths semi-transversality (by analogy to “Griffiths transversality,” in the
case of jumps of magnitude ≤ 1).

Next, we would like to consider the “Kodaira-Spencer morphism” obtained from
(VL, F r(VL),∇VL) by looking at the extent to which F 1(VL) is preserved by ∇VL . More
precisely, we would like to consider the composite:
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f∗(L) = F 1(VL) ↪→ VL
∇VL−→ VL ⊗OS

ΩSlog → (VL/F 2(VL))⊗OS
ΩSlog

By “Griffiths semi-transversality,” we see that the above composite maps into

1
2
· τ⊗2
E ⊗OS

f∗(L)⊗OS
ΩSlog = (F 3/F 2)(VL)⊗OS

ΩSlog ⊆ (VL/F 2(VL))⊗OS
ΩSlog

Moreover, the above composite is easily seen to be OS-linear, hence (by taking duals)
defines a morphism

κL : ΘSlog → End(f∗(L))⊗OS

1
2
· τ⊗2
E

(where ΘSlog is the dual of ΩSlog , and “End” denotes the sheaf of OS-endomorphisms of
the locally free OS-module f∗(L)).

Now, since in the present discussion, f∗(L) forms a line bundle on S, it follows that:
End(f∗(L) = OS . Thus, κL is a morphism

κL : ΘSlog → 1
2
· τ⊗2
E

By considering the universal case (i.e., when S = (M1,0)Z, except with differentials “ 1
2 ·

Ω
(Mlog

1,0)Z
” in order to take account of (∗KS)), we thus obtain that κL (for arbitrary C log →

Slog) arises from some element

∈ Γ((M1,0)Z,
1
2
· Ω

(Mlog
1,0)Z

⊗ 1
2
· τ⊗2
E ) =

1
4
· Z

(since, as is well-known, the Kodaira-Spencer morphism of the first de Rham cohomol-
ogy module of the tautological log elliptic curve over (Mlog

1,0)Z defines an isomorphism
Ω

(Mlog
1,0)Z

⊗ 1
2 · τ

⊗2
E
∼= 1

2 · O(Mlog
1,0)Z

). That is to say, κL is equal to some universal constant

∈ 1
4 · Z. Now I claim that

(∗UC) κL = 1
2 .

In this paper, we will present two independent proofs of the fact that κL �= 0. In the first
proof, we prove the stronger result (∗UC). In the second proof, we show only that κL �= 0.
Thus, logically speaking, the second proof is unnecessary. The reasons for the inclusion of
the second proof in this paper are that:
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(i) The author finds this proof to be aesthetically appealing.

(ii) This proof shows how one can “almost prove” (∗UC) using only ele-
mentary algebraic geometry (whereas the first proof requires the “more
advanced” techniques of §6).

First Proof that κL �= 0:

In this proof, we use the notation of §6. In the context of §6, the Kodaira-Spencer
morphism in question arises from applying the connection on (V∗

Lχ)
Ŝ

to F 1((V∗
Lχ)

Ŝ
) and

looking at the image of this map in (F 3/F 2)((V∗Lχ)
Ŝ
). By Theorem 6.1 (and the fact

that scalar differentials have no effect on the Kodaira-Spencer morphism), we thus see
that this amounts to differentiating Ξ(ζCG

0 ) (which generates F 1((V∗
Lχ)

Ŝ
)) in, say, the

logarithmic tangent direction ∂
∂log(q) , noting that this results in a linear combination of

Ξ(ζCG
0 ),Ξ(ζCG

1 ),Ξ(ζCG
2 ), and, finally, observing that the coefficient of Ξ(ζCG

2 ) is what we
would expect (relative to all the canonical identifications involved) if the Kodaira-Spencer
morphism is to equal “ 1

2 ,” as desired.

Since

Ξ(ζCG
0 ) =

∑
k∈Z

χM(ket) · q
1
2k

2+
iχ
n k · Uk

we thus see that applying ∂
∂log(q) amounts to multiplying the k-th coefficient in the series

by 1
2k

2 + iχ
n k, hence yields the same series as that obtained by applying P ( ∂

∂log(U) ), where
P (X) ∈ Q[X] is a polynomial with rational coefficients of degree 2 whose leading term
is 1

2X
2. Relative to all the canonical identifications involved, this leading term means

precisely that the “Kodaira-Spencer morphism” in question is 1
2 , as desired (at least in a

neighborhood of infinity; but this is sufficient, since (cf. the discussion above) the Kodaira-
Spencer morphism is a “constant”). This completes the proof of (∗UC). ©

Remark. Finally, we remark that the above proof, which involves the ideas surrounding
the comparison isomorphism of Theorem 6.2, further justifies the assertion of the author
in [Mzk1] that the “arithmetic Kodaira-Spencer morphism” constructed in [Mzk1], Chap-
ter IX, is indeed analogous to the usual geometric Kodaira-Spencer morphism (cf. the
discussion in the Introduction).

We summarize the above discussion as follows:

Theorem 8.1. (The Crystalline Theta Object) Let S be a smooth Z-scheme of
finite type, equipped with a log structure defined by a Z-flat divisor with crossings ⊆ S. Let

61



C log → Slog be a log elliptic curve, equipped with a degree one ample line bundle L of
torsion type (cf. Definition 4.4) on C, and a rigidification Lε ∼= OS of this line bundle
over the zero section of C log. Also, we assume that the condition (∗KS) of Lemma 5.1 is
satisfied.

Then this data defines a natural logarithmic connection ∇VL on the quasi-coherent
OS-module

VL def= f∗(LE∗
C,et

)

This OS-module VL is equipped with a natural Hodge filtration F r(VL), whose subquotients
are given by

(F r+1/F r)(VL) =
1
r!
· τ⊗rE ⊗OS

f∗(L)

Moreover, the triple (VL, F r(VL),∇VL) is compatible with automorphisms of the given data.
(We leave it to the reader to write out the routine details.) In particular, if L and its
rigidification are symmetric (i.e., preserved by the natural action of ±1 on C log), and
2 ∈ O×

S , then considering the eigenspaces of this action gives rise to a natural direct sum
decomposition

VL = VL+ ⊕ VL−

such that (for ‡ ∈ {+,−}) (F r+1/F r)(VL‡) is = (F r+1/F r)(VL) if the sign of (−1)r is
equal to ‡, and = 0 otherwise.

The natural logarithmic connections on (E∗
C,et,LE∗

C,et
) (cf. Theorem 5.2) and VL

satisfy “Griffiths semi-transversality” with respect to the natural Hodge filtrations (i.e.,
the connections preserve the Hodge filtrations up to jumps of magnitude ≤ 2). Thus, ∇VL
induces a Kodaira-Spencer morphism

κL : ΘSlog → 1
2
· τ⊗2
E

which (modulo the identification τ⊗2
E
∼= ΘM1,0

|S) is equal to 1
2 times the usual Kodaira-

Spencer morphism.

Proof. Everything follows from the above discussion. ©

Remark. In anticipation of the definition of some sort of natural Frobenius action on VL
(cf. the Remark onMF∇-objects at the beginning of this §), we shall refer to the triple

(VL, F r(VL),∇VL)

as the crystalline theta object.

Before presenting the “Second Proof” referred to above, we would like to pause to
review (those aspects that will be necessary in the present paper of) the theory of theta
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groups. This theory will be of use not only in the “Second Proof,” but also in various other
arguments that we use in the remainder of this paper.

Let l ≥ 2 be an integer, and assume that we are given a family of elliptic curves

E → S

over a base scheme S which satisfies the hypotheses of Theorem 8.1 (with trivial log
structure), and on which (for simplicity) l is invertible. Also, we assume that we are given
a degree one line bundle of torsion type L as in Theorem 8.1. Let us write

Ẽ → E

for the (étale) isogeny given by multiplication by l on Ẽ def= E. It is worth noting here that
since L̃ def= L|

Ẽ
will then be of degree l2 ≥ 4 ≥ 3, it follows that L̃ is very ample (over S)

and, moreover, (for n ≥ 1)

Sn{f∗(L̃)} → f∗(L̃⊗n)

is surjective (cf., e.g., [Mumf4], §2, Theorem 6). It is these properties of very ampleness and
surjectivity that often make it desirable to use the line bundle L̃, rather than the (simpler
and more readily analyzable) degree one line bundle L.

Now let us write (for an S-scheme T )

GL̃(T ) def= {(α, ι) | α ∈ Ẽ(T ), ι : T ∗
α L̃T ∼= L̃T }

for the theta group associated to L̃ (cf. [Mumf1,2,3]; [Mumf5], §23; or, alternatively,
[Mzk1], Chapter IV, §1, for an exposition of the theory of theta groups). (Here, we write
Tα : ẼT → ẼT for the automorphism given by translation by α.) Thus, GL̃ fits into an
exact sequence:

1→ Gm → GL̃ → l2E → 1

(where l2E is the kernel of multiplication by l2 on E).

Now observe that since l is invertible on S, Ẽ → E induces a natural morphism
Ẽ† → E† (cf. Theorem 5.3) which, in turn, induces an isomorphism Ẽ† ∼= E† ×E Ẽ, as

well as a morphism Ẽ
†
et → E

†
et (cf. Theorem 5.3). Moreover, the kernel of Ẽ†et → E

†
et

projects isomorphically into lẼ ⊆ Ẽ, i.e., we have an exact sequence

0→ lẼ → Ẽ
†
et → E

†
et → 0
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of group schemes over S. Next, observe that it follows from the fact that L̃ is obtained by
pull-back from E that we have a natural subgroup scheme

H ⊆ GL̃ ×Ẽ Ẽ
†
et

(describing how to descend L̃ back down to L) that maps isomorphically to lẼ. Thus, H
acts naturally on

VL̃
def= f∗(L̃|E∗

et×EẼ
)

(where ∗ def= L). Moreover, the isogeny Ẽ → E induces an inclusion VL def= f∗(LE∗
et

) ↪→ VL̃
which is compatible with connections and Hodge filtrations and which identifies VL with
the H-invariants VL̃

H of VL̃. Conversely, the theory of theta groups assures us that VL̃
may be recovered from the data (VL,H). Thus, in summary,

Although it is frequently necessary to work with L̃, and, in particular,
with VL̃ in order to make use of the very ampleness of L̃, the theory of
theta groups tells us that the structure of VL̃ may be analyzed (at least
in principle) by using the “simpler” object VL.

We are now ready to present the “Second Proof” of the nonvanishing of κL.

Second Proof that κL �= 0:

In this proof, we work over an S which is étale over (M1,0)Q. Thus, in particular,
the various integral structures considered on E† all coincide. Also, we use the notation
Ẽ → E, L̃, VL̃, of the review of theta groups given above.

Now observe that just as we defined a Kodaira-Spencer morphism for VL, we may
define an analogous morphism

κL̃ : ΘS → End(f∗(L̃))⊗OS

1
2
· τ⊗2
E

for VL̃. Note that since the action of H on VL̃ is clearly horizontal, it follows that κL̃
factors through

EndH(f∗(L̃))⊗OS

1
2
· τ⊗2
E ⊆ End(f∗(L̃))⊗OS

1
2
· τ⊗2
E

where we use the subscript “H” to denote endomorphisms that commute with the action
of H. Since EndH(f∗(L̃)) = End(f∗(L)) = OS , we thus obtain a morphism
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ΘS →
1
2
· τ⊗2
E

which (by the evident horizontality of the natural inclusion VL ↪→ VL̃) may be identified
with κL. In particular, if κL = 0, then it follows that κL̃ = 0, as well. Put another way,
this means that, ∇VL , ∇V

L̃
map F 1(VL), F 1(VL̃) into F 2(VL), F 2(VL̃), respectively.

Next, let us observe that since ±1 acts horizontally (i.e., in such a way that ∇VL is
preserved) on VL, and deg(L) = 1, it follows from the above discussion that ∇VL always
maps F 1(VL) ⊆ VL+ into VL+. Since VL+ ⋂

F 2(VL) ⊆ F 1(VL), we thus obtain that ∇VL
preserves F 1(VL). By considering the action of H as above, we thus conclude that ∇V

L̃
preserves F 1(VL̃). In particular, we thus obtain a connection ∇1 on

F1
def= f∗(L̃) = F 1(VL̃)

Moreover, since the natural morphism

Sn(F1)→ Fn def= f∗(L̃⊗n) ⊆ VL̃⊗n

def= f∗(L̃⊗n|
Ẽ†)

(for n ≥ 1) given by multiplication of sections is clearly horizontal, and the morphism
Sn(F1) → Fn is surjective (cf. the review of theta groups given above), we thus obtain
that the entire graded OS-algebra

⊕
n≥0

Fn

(where we let F0
def= OS) admits a connection. Since “Proj” of this graded algebra is the

elliptic curve Ẽ → S, we thus obtain that the family of elliptic curves Ẽ ∼= E → S admits
a connection. But (unraveling the definitions) this implies that the classifying morphism
S → (M1,0)Q for this family E → S has Kodaira-Spencer morphism (i.e., derivative) equal
to 0, which contradicts the fact that we took S → (M1,0)Q to be étale. This completes
the “Second Proof” that κL �= 0. ©

Before proceeding, we note that the technique of the above proof (involving theta
groups and taking “Proj”) motivates the following immediate consequence of Corollary
7.6:

Corollary 8.2. (Higher p-Curvatures of the Polarized Universal Extension) In
the notation of Corollary 7.6, all of the higher p-curvatures of the pair (E∗

et,LE∗
et

) vanish
identically. Moreover, if σ, Sσ are as in Corollary 7.6, then there is a unique isomorphism

{(E∗
et,LE∗

et
)|σ}⊗̂AOSσ

∼= (E∗
et,LE∗

et
)|Sσ
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over Sσ (where “⊗̂” denotes the topological tensor product) which (i) is equal to the identity
when restricted to σ; and (ii) maps (E∗

et,LE∗
et

)|σ on the left-hand side into the set of
horizontal sections on the right-hand side.

Remark. We leave it to the reader to formulate the routine details of defining the “higher
p-curvatures of the nonlinear object (E∗

et,LE∗
et

).”

Finally, before proceeding, we note one other important consequence of the above
discussion. Recall the condition (∗KS) of Lemma 5.1. Because we used this condition in
the proof of Lemma 5.1, it became necessary to assume this condition whenever we wished
to make use of a connection on E∗

C,et (where ∗ is as in Lemma 5.1) — cf. Theorems
5.2, 5.3, 8.1; Corollaries 7.6, 8.2. The above discussion shows, however, that in fact, this
condition is not necessary. Indeed, by translating as in the proof of Lemma 5.1, it suffices
to verify this in the case where ∗ is the line bundle defined by the origin. Moreover, by
working in the universal case, it suffices to show that arbitrary tangent vectors on (M1,0)Z2

(i.e., not just tangent vectors divisible by 2) act in an integral fashion on E∗
C,et via the

connection of Theorem 5.2. But observe that this may be verified in a neighborhood of
infinity. Moreover, by working with theta groups and the isogeny Ẽ

def= E → E given by
multiplication by an odd integer l ≥ 1 (cf. the review of theta groups given above), we
see that it suffices to check the asserted integrality for the action of the connection on
VL def= f∗(LE∗

C,et
), where L def= OE(0E). But this then amounts (cf. the “First Proof”

above) to the assertion that ∂
∂log(q) acts integrally on VL, which is generated by the “ζCG

r ,”
i.e., by series of the form

∑
k∈Z

P (k) · χM(ket) · q
1
2 (k2−k) · Uk

where P (−) is an integer-valued polynomial with rational coefficients (cf. the explicit
description of Ξ(ζCG

r ) given in §6). (Note that here, since “χL” is trivial, iχ
n = − 1

2 .) But
acting on such a series by ∂

∂log(q) amounts to replacing P (T ) (where T is an indeterminate)
by 1

2 (T 2 − T ) · P (T ), which is still an integer-valued polynomial with rational coefficients.
Thus, ∂

∂log(q) acts integrally on VL, as desired. In summary:

Corollary 8.3. The assumption that the condition (∗KS) be satisfied in Theorems 5.2,
5.3, 8.1; Corollaries 7.6, 8.2; may be omitted without affecting the validity of these results.

§8.2. An Explicit Formula for the Higher p-Curvatures:

In this §, we give an explicit formula for calculating the higher p-curvatures defined
in §7.1. This formula is obtained in the context of the general discussion of §7.1, and has
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nothing to do with the “Hodge-Arakelov theory of elliptic curves.” In §8.3 below, we apply
this formula to obtain a certain “higher p-curvature version” of the result concerning the
Kodaira-Spencer morphism given in Theorem 8.1.

In the following discussion, we use the notation of §7.1. In particular, we fix a prime
number p, and let A be a Zp-flat complete topological ring equipped with the p-adic topology,

and k
def= A⊗ Fp. Also, let us suppose that we are given a p-adic formal scheme S which

is formally smooth of relative dimension 1 over A, together with a locally free (though not
necessarily of finite rank!) quasi-coherent sheaf EZ/pnZ of OSZ/pnZ

-modules (where n ≥ 1

is an integer, and SZ/pnZ
def= S ⊗ Z/pnZ) equipped with a connection ∇E (relative to the

morphism S → Spf(A)). In addition, we assume that we are given a local coordinate t (of
S over A), and that we wish to compute the higher p-curvatures of EZ/pnZ in a “punctured
formal neighborhood” Spec(A[[t]][t−1]) of V (t) ⊆ S. In the discussion to follow, all of our
derivatives will be in the direction d log(t) def= dt

t . Thus, for instance, we will write ∇
(respectively, D) for the result of applying ∇E (respectively, the exterior derivative d) in
the tangent direction defined by (the dual of) d log(t).

Often in our discussion, we shall wish to consider various differential operators acting
on EZ/pnZ. Many of these differential operators will be constructed from simpler differential
operators by substituting the simpler differential operators into various formal polynomials.
The most fundamental formal polynomial in the following discussion is given by:

Ψ(T ) def=
(
T

p

)
=

1
p!
T (T − 1) · . . . · (T − (p− 1)) ∈ Qp[T ]

Also, we shall write

Ψ{j}(T ) def= Ψ(Ψ(. . . Ψ(T )))

for the result of iterating Ψ a total of j times (where j ≥ 1 is an integer).

Lemma 8.4. Suppose that the pj-curvature of EZ/pnZ vanishes identically for all j ≤ n.
Then

(p ·Ψ{j})(∇) ≡ 0 modulo p

for all j ≤ n.

Proof. Since the pj-curvature of EZ/pnZ vanishes identically for all j ≤ n, it follows that
EZ/pnZ is locally generated by horizontal sections (cf. Theorem 7.3). Thus, it suffices to
prove Lemma 8.4 in the case where EZ/pnZ = OSZ/pnZ

equipped with the trivial connection.
In particular, if suffices to show that for any series

f =
∑

k>>−∞
ck · tk
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(where ck ∈ A), the coefficients of each of the

Ψ{j}(D) · f

are ∈ A (i.e., are integral). But this amounts to showing the integrality of the

Ψ{j}(k)

for k ∈ Z, which follows from the well-known fact that Ψ(−) maps integers to integers. ©

Now suppose that n ≥ 2, and that the pj-curvature of EZ/pnZ vanishes identically
for all j ≤ n − 1. Then it follows that EZ/pnZ is locally generated by sections that are
horizontal modulo pn−1. Thus, for an appropriate local basis, ∇ may be written in the
form:

∇ = D + pn−1 · ω

where ω is a section of End(EFp
). Let us compute (p · Ψ)(∇). Since (pn−1 · ω)2 = 0, it

follows that

(p ·Ψ)(∇) = (p ·Ψ)(D) + {(p− 1)!}−1 · pn−1·
p−1∑
j=0

D · . . . · (D − (j − 1)) · ω · (D − (j + 1)) · . . . · (D − (p− 1))

= (p ·Ψ)(D) + pn−1 · Linω{(p ·Ψ)(D + ω)}
= (p ·Ψ)(D)− pn−1 · Linω{(D + ω)p − (D + ω)}
= (p ·Ψ)(D)− pn−1 · {Dp−1(ω)− ω}

where “Linω(−)” denotes the “term of degree one in ω”; (p − 1)! ≡ −1 modulo p (by an
easy calculation using the fact that Fp× is cyclic); and the equation

Linω{(D + ω)p} = Dp−1(ω)

follows from Jacobson’s formula (see, e.g., [Jac], pp. 186-187). This formula states that if
a and b are elements of an associative ring R of characteristic p, then

(a+ b)p = ap + bp +
p−1∑
i=1

si(a, b)
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where the si(a, b) are given by the formula:

(ad(Ta+ b))p−1(a) =
p−1∑
i=1

isi(a, b)T i−1

computed in the ring R[T ], where T is an indeterminate. (Here, we apply this formula in
the case a def= ω; b def= D, and use the fact that if f ∈ OSFp

, then (ad(b))(f) = [b, f ] =
[D, f ] = D(f).) On the other hand, an easy computation reveals that:

−(Dp−1(ω)− ω) = C(ω)

(i.e., the result of applying the Cartier operator to ω). (Indeed, the point here is that (in
characteristic p) Dp−1(tj)− tj = (jp−1 − 1) · tj , which is = −tj if j is divisible by p, and
= 0 otherwise.)

Thus, in summary, we obtain that modulo pn−1:

Ψ(∇) ≡ D1 + pn−2 · ω1

where D1
def= Ψ(D), and ω1

def= C(ω).

Next, let us observe that the operator D1 acts as 1
p ·D on tpj (where j ∈ Z) modulo

p. Indeed, this follows from the fact that

(
pj

p

)
≡ j · (p− 1)! · {(p− 1)!}−1 ≡ j

(modulo p). Since ω1 may be written as a series in terms of the form tpj , it thus follows
that we may repeat the above calculation with ∇ replaced by Ψ(∇). In particular, if we
repeat this calculation over and over again, we see that we obtain the following result:

Lemma 8.5. For 1 ≤ j ≤ n− 1, we have: modulo pn−j,

Ψ{j}(∇) ≡ Dj + pn−1−j · ωj

where Dj
def= Ψ{j}(D), and ωj

def= Cj(ω).

In particular, observe that if we take j = n−1, then the right-hand side of the equality
in Lemma 8.5 — regarded as an operator on series in terms of the form tp

n−1·a (where
a ∈ Z) in characteristic p — is simply the connection denoted “∇[n− 1]” in §7.1. (Here,
we use that Dn−1(tp

n−1·a) ≡ a · tpn−1·a, which follows from Lemma 8.7 below.) Thus, in
particular, if we substitute
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Ψ{n−1}(∇) ≡ Dn−1 + ωn−1

into the polynomial (p ·Ψ)(T ) ≡ −(T p − T ) (modulo p), we obtain an operator

−{(Dn−1 + ωn−1)p − (Dn−1 + ωn−1)}

which, when restricted to series in terms of the form tp
n−1·a in characteristic p, is equal to

minus the pn-curvature Pn of EZ/pnZ. On the other hand, by Jacobson’s formula (quoted
above), it follows that this operator differs from −(Dp

n−1−Dn−1) by an operator which is
OS-linear. Moreover, the operator −(Dp

n−1−Dn−1) is easily seen to be ≡ 0 modulo p (cf.
Lemma 8.4 above). Thus, in summary, we see that we have proven the following: modulo
p,

(p ·Ψ{n})(∇) = −Pn

(where both sides are linear over OS). We state this as a theorem:

Theorem 8.6. (Explicit Formula for Higher p-Curvatures) Let EZ/pnZ be a quasi-

coherent sheaf of locally free OSZ/pnZ
-modules (where n ≥ 1 is an integer, and SZ/pnZ

def=
S ⊗ Z/pnZ) equipped with a connection ∇E (relative to the morphism S → Spf(A)). Sup-
pose that we are also given a local coordinate t (of S over A). Write ∇ for the result of
applying ∇E (respectively, the exterior derivative d) in the tangent direction defined by (the
dual of) d log(t) def= dt

t . Also, let us write

Ψ(T ) def=
(
T

p

)
=

1
p!
T (T − 1) · . . . · (T − (p− 1)) ∈ Qp[T ]

(where T is an indeterminate) and

Ψ{j}(T ) def= Ψ(Ψ(. . . Ψ(T )))

for the result of iterating Ψ a total of j times (where j ≥ 1 is an integer). Suppose that
the pj-curvature of EZ/pnZ is ≡ 0 for all j ≤ n − 1. Then the pn-curvature Pn of EZ/pnZ

is given by the formula:
Pn ≡ −(p ·Ψ{n})(∇)

(modulo p).

Remark. In fact, it is not difficult to see that instead of using the specific polynomial Ψ(T ),
we could have used any polynomial F (T ) ∈ 1

p ·Zp[T ] of degree p such that p·F (T ) ≡ p·Ψ(T )
(modulo p). Similarly, if one is interested in differentiating in the tangent direction dual to
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dt (i.e., rather that d log(t)), then a similar formula to that of Theorem 8.6 holds, except
with Ψ(T ) replaced by the polynomial 1

p!T
p (or, indeed, any polynomial F (T ) ∈ 1

pZp[T ] of
degree p such that p · F (T ) ≡ p · ( 1

p!T
p) (modulo p)). Since these variants may be proved

by exactly the same argument as that given above, and, in the present paper, we only need
the explicit formula stated in Theorem 8.6, we leave the precise statement and proof of
these variants as (easy!) exercises for the reader.

Lemma 8.7. Modulo p, we have:

Ψ{n−1}(pn−1 · a) ≡ a

(for a ∈ Z).

Proof. Indeed, this follows from recursive application of the formula:

Ψ(pm · a) ≡ pm−1 · a · (p− 1)! · {(p− 1)!}−1 ≡ pm−1 · a

modulo pm (where m ≥ 1 is an integer). ©

§8.3. Hasse-type Invariants of the Crystalline Theta Object:

In this §, we study the relationship between the higher p-curvatures and the Hodge fil-
tration of the crystalline theta object. In the case of the first de Rham cohomology module
of an elliptic curve in positive characteristic, the invariant that describes the relationship
between the p-curvature and the Hodge filtration is referred to as the “Hasse invariant.”
Thus, one may think of the invariants discussed in the present § as analogues of the Hasse
invariant for the crystalline theta object. In addition to computing these invariants, we
apply our computations to compute the proof of Lemma 4.2 of §4.4.

In this §, we let p be a prime number. In the following discussion, we shall use the
notation of §4.4. Thus, we let S be étale over (M1,0)Zp

, and E → S be the pull-back from

(M1,0)Zp
of the tautological elliptic curve over (M1,0)Zp

. Also, let us write L def= OE(0E),
and Sord ⊆ S for the open subscheme obtained by removing the supersingular points in
characteristic p.

Recall the intermediate étale integral structures E∗;{N}
et (where ∗ def= L) defined at the

end of §4.4. Note that in the present p-adic context, we have:

E
∗;{N}
et = E

∗;{pj}
et

where j ≥ 0 is the largest integer such that pj ≤ N . (Indeed, this can be seen, for
instance, by using the description at the end of §4.4 of the subquotients (F r+1/F r)(−)

71



of the intermediate étale integral structures, together with the elementary numerical fact
that if pj ≤ N < pj+1, then

ordp(N !) =
j∑
i=0

ai · ordp{(pi)!}

(where N =
∑j
i=0 aip

i; ai ∈ {0, 1, 2, . . . , p− 1}).) Now we have the following observation:

Lemma 8.8. The connection of Theorem 5.2 (cf. also Corollary 8.3) on (E∗
et,LE∗

et
) in

fact acts integrally on (E∗;{N}
et ,L

E
∗;{N}
et

) for all integers N ≥ 2.

Proof. Indeed, the argument is that of the discussion preceding Corollary 8.3: Namely,
the point is that the exponent of q in the expansion

∑
k∈Z

P (k) · χM(ket) · q
1
2 (k2−k) · Uk

is given by 1
2k(k − 1), which is equal to

(
k
2

)
. Thus, multiplication by this factor preserves

all intermediate integral structures (for which N ≥ 2). ©

Now let us write

V{N}
L

def= f∗(LE∗;{N}
et

)

Thus, V{N}
L admits a natural connection ∇V (as soon as we choose a rigidification of Lε

— cf. Theorem 8.1). Now let r ≥ 0; a, b ≥ 1 be integers. Suppose that the pj-curvature of
V{pb}
L vanishes for j < a. Then if we compose the inclusion F r+1(V{pb}

L ) ⊆ V{pb}
L with the

pa-curvature of V{pb}
L , we obtain a morphism

F r+1(V{pb}
L )Fp

⊗OS
τ⊗ 2pa

E → (V{pb}
L )Fp

(where we note that (by our assumption that S → (M1,0)Zp
is étale) we may identify

τ⊗ 2
E with the tangent bundle of S over Zp). Note that by the explicit formula for the pa-

curvature (Theorem 8.6), it follows that the pa-curvature may be computed as a polynomial
in ∇V of degree ≤ pa. Since — by Griffiths semi-transversality (cf. Theorem 8.1) — ∇V
gives rise to jumps of length ≤ 2 in the Hodge filtration, it thus follows that the above
morphism maps into F r+1+2pa

(V{pb}
L )Fp

⊆ (V{pb}
L )Fp

(and, similarly, maps F r(−) into
F r+2pa

(−)). Thus, by projecting onto (F r+1+2pa

/F r+2pa

)(−), we obtain a morphism
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{ 1
γ(pb, r)

· f∗(L)⊗OS
τ⊗ r+2pa

E

}
Fp

→
{ 1
γ(pb, r + 2pa)

· f∗(L)⊗OS
τ⊗ r+2pa

E

}
Fp

(where γ(−,−) is as in the discussion at the end of §4.4), i.e., (since f∗(L) and τE are line
bundles on S) an element

hp;r;a,b ∈
{ γ(pb, r)
γ(pb, r + 2pa)

· OS
}
⊗ Fp

which may be regarded as a sort of generalization of the Hasse invariant of an elliptic
curve in that it describes the extent to which the (higher) p-curvature is compatible with
the Hodge filtration.

Theorem 8.9. (Computation of Hasse-type Invariants of the Crystalline
Theta Object) Let p be a prime number. Suppose that S is étale over (M1,0)Zp

, and
write E → S for the pull-back from (M1,0)Zp

of the tautological elliptic curve over

(M1,0)Zp
. Also, let us write L def= OE(0E). Let r ≥ 0; a, b ≥ 1 be integers, and suppose

that the pj-curvature of V{pb}
L vanishes for j < a. Then the invariant

hp;r;a,b ∈
{ γ(pb, r)
γ(pb, r + 2pa)

· OS
}
⊗ Fp

(where γ(−,−) is the number defined at the end of §4.4) obtained by restricting the pa-
curvature to

F r+1(V{pb}
L ) ⊆ V{pb}

L
def= f∗(L

E
∗;{pb}
et

)

and then projecting onto (F r+1+2pa

/F r+2pa

)(−) is equal to the image of

(1
2

)pa

·
{ −p

(p!)pa−1 · (p!)pa−2 · . . . · (p!)p · p!

}
∈

(1
2

)pa

·
{ p

(pa)!

}
· Zp×

in { γ(pb,r)
γ(pb,r+2pa)

· OS} ⊗ Fp.

Proof. Indeed, it suffices to compute hp;a,b near infinity using Theorem 8.6. Then hp;r;a,b
is simply the leading term of −p · Ψ{a}(1

2k(k − 1)). Each iteration of Ψ(−) affects the
leading term by raising it to the p-th power, and then dividing it by p!. Thus, induction
on a gives rise to the expression stated in Theorem 8.9. ©

Remark. Thus, Theorem 8.9 may be interpreted as a sort of “higher p-curvature” gener-
alization of the portion of Theorem 8.1 concerning the Kodaira-Spencer morphism of the
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crystalline theta object (which, so to speak, corresponds to the case “a = 0”). Note that
one may also think of Theorem 8.9 as a result that reduces the computation of the various
(arithmetic-geometric!) Hasse-type invariants of the crystalline theta object to a matter of
combinatorics.

One might suspect from the appearance of the number 2 throughout the statement
of Theorem 8.9 that the content of this theorem takes on a particularly interesting form
when one restricts to the case p = 2. This is indeed the case. In the following discussion,
we would like to make this intuition explicit. Thus, for the remainder of this §, we assume
that p = 2. First, let us observe that the leading term of

Pa(T ) def= Ψ{a}(
1
2
T (T − 1))

is (up to a Zp×-multiple) of the form

1
(pa+1)!

· T pa+1

(since, in the present situation, 2p
a · (pa)! ∈ (pa+1)! · Zp×). Thus, in particular, it follows

that for any integer a ≥ 0, the Zp-subalgebra of Qp[T ] generated by P0(T ) = 1
2T (T −

1), P1(T ), . . . , Pa(T ) coincides with the Zp-subalgebra generated by {
(
T
r

)
}, where r ranges

over all powers of p which are ≤ pa+1. On the other hand, since vanishing of the pa-
curvature is equivalent to the integrality of Ψ{a}(∇V) (cf. Theorem 8.6), we thus obtain
the following result:

Corollary 8.10. (Higher p-Curvatures in the Case p=2) In the context of The-
orem 8.9, assume that p = 2. Then the pa-curvature of V{pb}

L vanishes for all a < b.
Moreover, the pa-curvature of V{pa}

L maps F 1(V{pa}
L )⊗ τ⊗ pa+1

E ⊗ Fp isomorphically onto
the image of the morphism

p · F 1+pa+1
(V{pa+1}

L ) ⊆ F 1+pa+1
(V{pa}

L )→ F 1+pa+1
(V{pa}

L )Fp

Finally, the composite of the pa-curvature of V{pa}
L with the natural projection to the subquo-

tient (F 1+pa+1
/F p

a+1
)(−) maps F 1(V{pa}

L )⊗τ⊗ pa+1

E ⊗Fp isomorphically onto the reduction
of

(F 1+pa+1
/F p

a+1
)(V{pa}

L ) = p · (F 1+pa+1
/F p

a+1
)(V{pa+1}

L )

modulo p.

Proof. All of the assertions follow from the above discussion, together with the fact that
{(pa)!}p · p ∈ (pa+1)! · Zp×. ©
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We are now ready to apply Theorem 8.9 in the case of p = 2 to complete the proof of
Lemma 4.2:

Completion of the Proof of Lemma 4.2:

By applying the theory of theta groups (as reviewed in §8.1— cf. especially the “very
ampleness” and “surjectivity” properties that were discussed there), we reduce immediately
to the case (cf. the notation of Lemma 4.2) where the line bundle “M” is equal to L. Then
we must show the surjectivity of

(F r+1/F r)(VL)→ 1
r!
· τ⊗rE ⊗OS

f∗(L)

for all r ≥ 0. We propose to do this by induction on r. Note that this surjectivity is
clear for r = 0, 1. Moreover, let us observe that for r = 2, this surjectivity follows from
the description of the Kodaira-Spencer morphism in Theorem 8.1. Indeed, this description
implies that if we take apply ∇V (in a generating tangent direction at some point of S) to
a generator of F 1(VL), then the image in (F 3/F 2)(VL) of the resulting section of F 3(VL)
generates 1

2 · τ
⊗2
E ⊗OS

f∗(L), as desired. This completes the proof of this surjectivity for
r ≤ 2. It turns out that the proof for r > 2 will proceed in a similar (although somewhat
more intricate) fashion by applying Corollary 8.10 in place of Theorem 8.1.

Next, let us observe that once we show this surjectivity for all r ≤ N (where N ≥ 1
is some integer), it follows from the theory of theta groups (as discussed above) that the
corresponding surjectivity for r ≤ N and “M” equal to sufficiently large tensor powers of
L also holds. In particular, by the definition of the “intermediate étale integral structures”
(i.e., as consisting of those functions lying in the algebra generated by F r+1(−) of the
“full” étale integral structure) we obtain (by taking “Proj”) that the subquotients of the
structure sheaf of E∗;{N}

et have the expected form (as given at the end of §4.4). Thus, in
summary, we see that if we show the desired surjectivity for all r ≤ pa (where a ≥ 1 is an
integer), then this already implies the desired surjectivity for all r < pa+1.

In particular, we see that it suffices to prove the desired surjectivity for r = pa+1

(where a ≥ 1 is an integer), under the assumption that the subquotients of the structure
sheaf of E∗;{pa}

et have the expected form (as given at the end of §4.4). But now let us observe
that

F j(V{pa}
L ) = F j(V{pa+1}

L )

for j ≤ pa+1, while (cf. Corollary 8.10)

(F 1+pa+1
/F p

a+1
)(V{pa}

L )|Sord = p · (F 1+pa+1
/F p

a+1
)(V{pa+1}

L )|Sord
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(i.e., we restrict to the ordinary locus Sord since over Sord the desired surjectivity is already
known). Thus, in particular, the desired surjectivity for r = pa+1 will follow as soon as we
show that the torsion-free sheaf (F 1+pa+1

/F p
a+1

)(V{pa+1}
L ) is a line bundle over all of S.

But this will follow as soon as we show that the splitting σa of the morphism

F 1+pa+1
(V{pa}

L )Fp
→

{ p

(pa+1)!
· τ⊗ pa+1

E ⊗OS
f∗(L)

}
Fp

defined over Sord
Fp

by taking the image of the morphism

p · F 1+pa+1
(V{pa+1}

L ) ⊆ F 1+pa+1
(V{pa}

L )→ F 1+pa+1
(V{pa}

L )Fp

extends over SFp
.

On the other hand, by (the portion concerning V{pa}
L of) Corollary 8.10 (which, by

the induction hypothesis, we are free to use), if we take a generator of F 1(V{pa}
L )Fp

near
an arbitrary point of SFp

and apply to this generator the pa-curvature of V{pa}
L (in a

generating tangent direction), the image of the resulting section of F 1+pa+1
(V{pa}

L )Fp
in

{ p
(pa+1)! · τ

⊗ pa+1

E ⊗OS
f∗(L)}Fp

is generating, and, in fact, defines the same splitting over
Sord

Fp
as σa. That is to say, σa extends over SFp

, as desired. This completes the proof of
Lemma 4.2. ©

§9. Relation to the Theory of [Mzk1]

So far in this paper, we have only discussed the étale integral structure on Hodge
torsors for line bundles of relative degree 1. In [Mzk1], however, we need to make use of
Hodge torsors of arbitrary positive degree d. Unfortunately, however, although the integral
structure necessary for what is done in [Mzk1] is implicitly given correctly in [Mzk1] in
a neighborhood of infinity — in the form of the “ζCG

r ” of [Mzk1], Chapter V, §4.8, the
author is guilty of making a number of erroneous assertions relative to extending this
integral structure over the entire moduli stack (M1,0)Z, which he would like to take the
opportunity to correct in the following discussion:

(1) First of all, the author wrote [Mzk1], Chapter VI, §1, under the mis-
taken presumption that the correct integral structure in a neighborhood
of infinity (i.e., that given by the “ζCG

r ”) coincides with the étale integral
structure of the universal extension (i.e., the integral structure presented
in §1 of the present paper) in a neighborhood of infinity. Put another
way, the author ignored the fact that the Hodge torsors are only tor-
sors over the universal extension, which do not (in general) admit global
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integral trivializations (cf. the first Remark following Proposition 3.4).
Another more concrete way to describe the author’s error is to state
that he confused the integral structure defined by the “

(
T
r

)
” with that

defined by the “
(
T−(iχ/n)

r

)
” (notation of §4.2).

(2) The proof that the étale integral structure on the universal extension
extends over the entire moduli stack (M1,0)Z given in [Mzk1], Chapter
V, §3, is incomplete. A complete proof, however, is given in §1 of the
present paper.

(3) In fact, in the context of [Mzk1], it is necessary (cf. (1) above) to
prove not just that the étale integral structure on the universal extension
extends over the entire moduli stack (M1,0)Z (i.e., Theorem 1.3 of the
present paper), but that also that the étale integral structure on the
Hodge torsors extends over the entire moduli stack (M1,0)Z. This is
carried out correctly in the proof of Theorem 4.3 given in the present
paper.

The author would like to take this opportunity to apologize to readers of [Mzk1] for these
errors.

Next, we would like to clear up the confusion resulting from the above errors by
stating, in the notation of the present paper, the correct integral structure for what is done
in [Mzk1] (more precisely, for the main result (i.e., Theorem A of [Mzk1], Introduction, §1)
of [Mzk1]). Since the correct integral structure in a neighborhood at infinity is essentially
given accurately in [Mzk1](i.e., using the “ζCG

r ’s” — cf., e.g., the reference to [Mzk1],
Chapter V, Theorem 4.8, given in [Mzk1], Introduction, Theorem A, (3)), we concentrate
here on the case of smooth elliptic curves E → S over a Z-flat noetherian scheme S.

First, let us recall that in [Mzk1], Chapter V, §2, we defined the object E†[d] by

“pushing out” the ωE-torsor E† via the morphism [d] : ωE → ωE given by multiplication
by (some positive integer) d. The reason that this was necessary was that we wished to
deal with d-torsion points inside E† which only become integral if we use the modified

integral structure E†[d]. In fact, of course, in order to obtain an integral structure suitable
for Theorem A of [Mzk1], Introduction, §1, we must also make further modifications of
the integral structure of E†. For instance, we would like to use the various properties of
the étale integral structure, so, in fact, we need an “étale integral structure version” of

E
†
[d]. Since (unlike the kernel of E† → E) the kernel of E†et → E is difficult to describe

explicitly, instead of defining the étale integral structure version of E†[d] by “pushing out

via multiplication by d on the kernel of E†et → E,” we take the following indirect approach:
We begin by observing that we have a commutative diagram
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0 −→ ωE −→ E† −→ E −→ 0⏐⏐�[d]

⏐⏐� ⏐⏐�id

0 −→ ωE −→ E
†
[d] −→ E −→ 0⏐⏐�id

⏐⏐� ⏐⏐�[d]

0 −→ ωE −→ E† −→ E −→ 0

of morphisms of group objects over S. This diagram shows that E†[d] may be defined either
as the result of pushing forward the first exact sequence via [d] : ωE → ωE , or as the result
of pulling back the third exact sequence via [d] : E → E. This makes it natural to define

E
†
[d],et

def= E
†
[d] ×E,[d] E

(i.e., the morphism E → E implicit in the second factor of the fibered product is the
morphism [d] : E → E given by multiplication by d). Note that we have a natural
commutative diagram of morphisms over E

E
†
et −→ E†⏐⏐� ⏐⏐�

E
†
[d],et −→ E

†
[d]

where F 2(O
E
†
[d],et

) = F 2(O
E
†
[d]

) (i.e., the subsheaves of the structure sheaves of E†[d],et and

E
†
[d] consisting of functions of torsorial degree < 2 coincide). Moreover, if we consider the

morphism E
†
[d],et → E

†
[d] in a neighborhood of infinity, we see that, just as the integral

structure of E† (respectively, E†[d]; E
†
et) is defined by the “T r” (respectively, “(d · T )r”;

“
(
T
r

)
”), the integral structure of E†[d],et is defined by the “

(
d·T
r

)
” (cf. the notation of §1).

Now let η ∈ E(S) be a torsion point of order m. Then we would like to define the “E†[d]
versions” (i.e., “pushed out by [d] : ωE → ωE versions”) of E∗, E∗

et, where ∗ def= OE(η).

Since E∗ (respectively, E∗
et) is a torsor over E† (respectively, E†et), the natural way to

define such objects E∗
[d], E

∗
[d],et is as follows:

Definition 9.1. We define E∗
[d] (respectively, E∗

[d],et) is to be the result of executing the

“change of structure group” E† → E
†
[d] (respectively, E†et → E

†
[d],et) to the E†- (respec-

tively, E†et-) torsor E∗ (respectively, E∗
et).
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Thus, in a neighborhood of infinity, (if we let iχ, n
def= 2m be as in §4.2, then) just

as the integral structure of E∗ (respectively, E∗
et) is defined by the “(T − (iχ/2m))r”

(respectively, “
(
T−(iχ/2m)

r

)
”), the integral structure of E∗

[d] (respectively, E∗
[d],et) is defined

by the “{d ·(T −(iχ/2m))}r” (respectively, “
(
d·(T−(iχ/2m))

r

)
”) (cf. the notation of §1; §4.2).

Theorem 9.2. (Correct Integral Structure for [Mzk1]) Let

E → S

be a family of elliptic curves over a Z-flat noetherian scheme S. Let d,m ≥ 1 be in-
tegers such that m does not divide d. Let η ∈ E(S) be a torsion point of order pre-
cisely m, and let us write L def= OE(d · [η]). Then the correct definition of the notation
“(fS)∗(L|

E
†
∞,[d]

)<d{∞, et}” of [Mzk1], Introduction, §1, Theorem A, is given (relative to

the notation of the present paper) by:

F d(f∗(LE∗
[d],et

))

where ∗ def= OE(η); F d(−) denotes the subobject of sections of torsorial degree < d; and
E∗

[d],et is as defined in Definition 9.1.

Remark. Although the definition of the integral structure necessary for the purposes of
[Mzk1] that we gave in [Mzk1] is partially inaccurate (as explained above), once one defines
this integral structure correctly (as in Theorem 9.2 above), the arguments used to prove
Theorem A in [Mzk1], Introduction, §1, are all valid without change.
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